- ID:
- ivo://CDS.VizieR/II/328
- Title:
- AllWISE Data Release
- Short Name:
- II/328
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Wide-field Infrared Survey Explorer (WISE; see Wright et al. 2010AJ....140.1868W) is a NASA Medium Class Explorer mission that conducted a digital imaging survey of the entire sky in the 3.4, 4.6, 12 and 22um mid-infrared bandpasses (hereafter W1, W2, W3 and W4). The AllWISE program extends the work of the successful Wide-field Infrared Survey Explorer mission by combining data from the cryogenic and post-cryogenic survey phases to form the most comprehensive view of the mid-infrared sky currently available. AllWISE has produced a new Source Catalog and Image Atlas with enhanced sensitivity and accuracy compared with earlier WISE data releases. Advanced data processing for AllWISE exploits the two complete sky coverages to measure source motions for each Catalog source, and to compile a massive database of light curves for those objects.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/633/A115
- Title:
- ALMA and NACO observations towards V1400 Cen
- Short Name:
- J/A+A/633/A115
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Our aim was to directly detect the thermal emission of the putative exoring system responsible for the complex deep transits observed in the light curve for the young Sco-Cen star 1SWASP J140747.93-394542.6 (V1400 Cen, hereafter J1407), confirming it as the occulter seen in May 2007, and to determine its orbital parameters with respect to the star. We used the Atacama Large Millimeter/submillimeter Array (ALMA) to observe the field centred on J1407 in the 340GHz (Band 7) continuum in order to determine the flux and astrometric location of the ring system relative to the star. We used the VLT/NACO camera to observe the J1407 system in March 2019 and to search for the central planetary mass object at thermal infrared wavelengths. We detect no point source at the expected location of J1407, and derive an upper limit 3{sigma} level of 57.6uJy. There is a point source detected at an angular separation consistent with the expected location for a free-floating ring system that occulted J1407 in May 2007, with a flux of 89uJy consistent with optically thin dust surrounding a massive substellar companion. At 3.8 microns with the NACO camera, we detect the star J1407 but no other additional point sources within 1.3 arcseconds of the star, with a lower bound on the sensitivity of 6MJup at the location of the ALMA source, and down to 4MJup in the sky background limit. The ALMA upper limit at the location of J1407 implies that a hypothesised bound ring system is composed of dust smaller than 1 mm in size, implying a young ring structure. The detected ALMA source has multiple interpretations, including: (i) it is an unbound substellar object surrounded by warm dust in Sco-Cen with an upper mass limit of 6M_Jup_, or (ii) it is a background galaxy.
- ID:
- ivo://CDS.VizieR/J/ApJ/882/5
- Title:
- ALMA data for 5 luminous & ultraluminous IR gal.
- Short Name:
- J/ApJ/882/5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A new analysis of high-resolution data from the Atacama Large Millimeter/submillimeter Array for five luminous or ultraluminous infrared galaxies gives a slope for the Kennicutt-Schmidt (KS) relation equal to 1.74_-0.07_^+0.09^ for gas surface densities {Sigma}_mol_>10^3^M_{sun}_/pc^2^ and an assumed constant CO-to-H2 conversion factor. The velocity dispersion of the CO line, {sigma}_v_, scales approximately as the inverse square root of {Sigma}_mol_, making the empirical gas scale height determined from H~0.5{sigma}^2^/({pi}G{Sigma}_mol_) nearly constant, 150-190pc, over 1.5 orders of magnitude in {Sigma}_mol_. This constancy of H implies that the average midplane density, which is presumably dominated by CO-emitting gas for these extreme star-forming galaxies, scales linearly with the gas surface density, which in turn implies that the gas dynamical rate (the inverse of the freefall time) varies with {Sigma}_mol_^1/2^, thereby explaining most of the super-linear slope in the KS relation. Consistent with these relations, we also find that the mean efficiency of star formation per freefall time is roughly constant, 5%-7%, and the gas depletion time decreases at high {Sigma}_mol_, reaching only ~16Myr at {Sigma}_mol_~10^4^M_{sun}_/pc^2^. The variation of {sigma}_v_ with {Sigma}_mol_ and the constancy of H are in tension with some feedback-driven models, which predict {sigma}_v_ to be more constant and H to be more variable. However, these results are consistent with simulations in which large-scale gravity drives turbulence through a feedback process that maintains an approximately constant Toomre Q instability parameter.
- ID:
- ivo://CDS.VizieR/J/A+A/627/L6
- Title:
- ALMA Long Baseline maps of G17.64+0.16
- Short Name:
- J/A+A/627/L6
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the highest angular resolution (20x15mas - 44x33au) Atacama Large Millimeter/sub-millimeter Array (ALMA) observations currently possible of the proto-O-star G17.64+0.16 in Band 6. The Cycle 5 observations with baselines out to 16 km probes scales <50au and reveal the rotating disc around G17.64+0.16, a massive forming O-type star. The disc has a ring-like enhancement in the dust emission, especially visible as arc structures to the north and south. The Keplerian kinematics are most prominently seen in the vibrationally excited water line, H_2_O (Eu=3461.9K). The mass of the central source found by modelling the Keplerian rotation is consistent with 45+/-10M_{sun}_. The H30alpha (231.9GHz) radio-recombination line and the SiO (5-4) molecular line were detected at up to the 10-sigma level. The estimated disc mass is 0.6-2.6M_{sun}_ under the optically thin assumption. Analysis of the Toomre Q parameter, in the optically thin regime, indicates that the disc stability is highly dependent on temperature. The disc currently appears stable for temperatures >150K, this does not preclude that the substructures formed earlier through disc fragmentation.
- ID:
- ivo://CDS.VizieR/J/A+A/620/A31
- Title:
- ALMA maps of G17.64+0.16
- Short Name:
- J/A+A/620/A31
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present high angular resolution (~0.2") continuum and molecular emission line Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of G17.64+0.16 in Band 6 (220-230GHz) taken as part of a campaign in search of circumstellar discs around (proto)-O-stars. At a resolution of ~400au the main continuum core is essentially unresolved and isolated from other strong and compact emission peaks. We detect SiO (5-4) emission that is marginally resolved and elongated in a direction perpendicular to the large-scale outflow seen in the ^13^CO (2-1) line using the main ALMA array in conjunction with the Atacama Compact Array (ACA). Morphologically, the SiO appears to represent a disc-like structure. Using parametric models we show that the position-velocity profile of the SiO is consistent with the Keplerian rotation of a disc around an object between 10-30M_{sun}_ in mass, only if there is also radial expansion from a separate structure. The radial motion component can be interpreted as a disc wind from the disc surface. Models with a central stellar object mass between 20 and 30M_{sun}_ are the most consistent with the stellar luminosity 1x10^5^L_{sun}_) and indicative of an O-type star. The H30{alpha} millimetre recombination line (231.9GHz) is also detected, but spatially unresolved, and is indicative of a very compact, hot, ionised region co-spatial with the dust continuum core. The broad line-width of the H30{alpha} emission (Full-Width-Half-Maximum=81.9km/s is not dominated by pressure-broadening but is consistent with underlying bulk motions. These velocities match those required for shocks to release silicon from dust grains into the gas phase. CH_3_CN and CH_3_OH thermal emission also shows two arc shaped plumes that curve away from the disc plane. Their coincidence with OH maser emission suggests that they could trace the inner working surfaces of a wide-angle wind driven by G17.64 which impacts the diffuse remnant natal cloud before being redirected into the large-scale outflow direction. Accounting for all observables, we suggest that G17.64 is consistent with a O-type young stellar object in the final stages of protostellar assembly, driving a wind, but that has not yet developed into a compact HII region. The existence and detection of the disc in G17.64 is likely related to its isolated and possibly more evolved nature, traits which may underpin discs in similar sources.
- ID:
- ivo://CDS.VizieR/J/A+A/615/A94
- Title:
- ALMA massive protocluster gas clumps maps
- Short Name:
- J/A+A/615/A94
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Fragmentation of massive dense molecular clouds is the starting point in the formation of rich clusters and massive stars. Theory and numerical simulations indicate that the population of the fragments (number, mass, diameter, separation) resulting from the gravitational collapse of such clumps is probably regulated by the balance between the magnetic field and the other competitors of self-gravity, in particular turbulence and protostellar feedback. We have observed 11 massive, dense and young star-forming clumps with the Atacama Large Millimeter Array (ALMA) in the thermal dust continuum emission at 1mm with an angular resolution of 0.25 arcseconds with the aim of determining their population of fragments.
- ID:
- ivo://CDS.VizieR/J/ApJ/768/91
- Title:
- ALMA observations of LESS submm galaxies
- Short Name:
- J/ApJ/768/91
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 0 survey of 126 submillimeter sources from the LABOCA ECDFS Submillimeter Survey (LESS). Our 870{mu}m survey with ALMA (ALESS) has produced maps ~3x deeper and with a beam area ~200x smaller than the original LESS observations, doubling the current number of interferometrically-observed submillimeter sources. The high resolution of these maps allows us to resolve sources that were previously blended and accurately identify the origin of the submillimeter emission. We discuss the creation of the ALESS submillimeter galaxy (SMG) catalog, including the main sample of 99 SMGs and a supplementary sample of 32 SMGs. We find that at least 35% (possibly up to 50%) of the detected LABOCA sources have been resolved into multiple SMGs, and that the average number of SMGs per LESS source increases with LESS flux density. Using the (now precisely known) SMG positions, we empirically test the theoretical expectation for the uncertainty in the single-dish source positions. We also compare our catalog to the previously predicted radio/mid-infrared counterparts, finding that 45% of the ALESS SMGs were missed by this method. Our ~1.6" resolution allows us to measure a size of ~9kpcx5kpc for the rest-frame ~300{mu}m emission region in one resolved SMG, implying a star formation rate surface density of 80M_{sun}_/yr/kpc2, and we constrain the emission regions in the remaining SMGs to be <10kpc. As the first statistically reliable survey of SMGs, this will provide the basis for an unbiased multiwavelength study of SMG properties.
- ID:
- ivo://CDS.VizieR/J/ApJ/886/102
- Title:
- ALMA obs. of 70um dark high-mass clumps (ASHES)
- Short Name:
- J/ApJ/886/102
- Date:
- 08 Mar 2022 13:24:32
- Publisher:
- CDS
- Description:
- The ALMA Survey of 70{mu}m dark High-mass clumps in Early Stages (ASHES) is designed to systematically characterize the earliest stages and constrain theories of high-mass star formation. Twelve massive (>500M_{sun}_), cold (<=15K), 3.6-70{mu}m dark prestellar clump candidates, embedded in infrared dark clouds, were carefully selected in the pilot survey to be observed with the Atacama Large Millimeter/submillimeter Array (ALMA). We have mosaicked each clump (~1arcmin^2^) in continuum and line emission with the 12m, 7m, and Total Power (TP) arrays at 224GHz (1.34mm), resulting in ~1.2" resolution (~4800au, at the average source distance). As the first paper in the series, we concentrate on the continuum emission to reveal clump fragmentation. We detect 294 cores, from which 84 (29%) are categorized as protostellar based on outflow activity or "warm core" line emission. The remaining 210 (71%) are considered prestellar core candidates. The number of detected cores is independent of the mass sensitivity range of the observations and, on average, more massive clumps tend to form more cores. We find a large population of low-mass (<1M_{sun}_) cores and no high-mass (>30M_{sun}_) prestellar cores (maximum mass 11M_{sun}_). From the prestellar core mass function, we derive a power-law index of 1.17+/-0.10, which is slightly shallower than Salpeter. We used the minimum spanning tree (MST) technique to characterize the separation between cores and their spatial distribution, and to derive mass segregation ratios. While there is a range of core masses and separations detected in the sample, the mean separation and mass per clump are well explained by thermal Jeans fragmentation and are inconsistent with turbulent Jeans fragmentation. Core spatial distribution is well described by hierarchical subclustering rather than centrally peaked clustering. There is no conclusive evidence of mass segregation. We test several theoretical conditions and conclude that overall, competitive accretion and global hierarchical collapse scenarios are favored over the turbulent core accretion scenario.
- ID:
- ivo://CDS.VizieR/J/ApJ/882/138
- Title:
- ALMA Spectroscopic Survey in the HUDF (ASPECS)
- Short Name:
- J/ApJ/882/138
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use the results from the ALMA large program ASPECS, the spectroscopic survey in the Hubble Ultra Deep Field (HUDF), to constrain CO luminosity functions of galaxies and the resulting redshift evolution of {rho}(H_2_). The broad frequency range covered enables us to identify CO emission lines of different rotational transitions in the HUDF at z>1. We find strong evidence that the CO luminosity function evolves with redshift, with the knee of the CO luminosity function decreasing in luminosity by an order of magnitude from ~2 to the local universe. Based on Schechter fits, we estimate that our observations recover the majority (up to ~90%, depending on the assumptions on the faint end) of the total cosmic CO luminosity at z=1.0-3.1. After correcting for CO excitation, and adopting a Galactic CO-to-H_2_ conversion factor, we constrain the evolution of the cosmic molecular gas density {rho}(H_2_): this cosmic gas density peaks at z~1.5 and drops by a factor of 6.5_-1.4_^+1.8^ to the value measured locally. The observed evolution in {rho}(H_2_), therefore, closely matches the evolution of the cosmic star formation rate density {rho}SFR. We verify the robustness of our result with respect to assumptions on source inclusion and/or CO excitation. As the cosmic star formation history can be expressed as the product of the star formation efficiency and the cosmic density of molecular gas, the similar evolution of {rho}(H_2_) and {rho}SFR leaves only little room for a significant evolution of the average star formation efficiency in galaxies since z~3 (85% of cosmic history).
- ID:
- ivo://CDS.VizieR/J/ApJ/812/43
- Title:
- ALMA 870um obs. of HerMES galaxies
- Short Name:
- J/ApJ/812/43
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Herschel Multi-tiered Extragalactic Survey (HerMES, Oliver et al. 2012, VIII/95) has identified large numbers of dusty star-forming galaxies (DSFGs) over a wide range in redshift. A detailed understanding of these DSFGs is hampered by the limited spatial resolution of Herschel. We present 870{mu}m 0.45" resolution imaging obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) of a sample of 29 HerMES DSFGs that have far-infrared (FIR) flux densities that lie between the brightest of sources found by Herschel and fainter DSFGs found via ground-based surveys in the submillimeter region. The ALMA imaging reveals that these DSFGs comprise a total of 62 sources (down to the 5{sigma} point-source sensitivity limit in our ALMA sample; {sigma}~0.2mJy). Optical or near-infrared imaging indicates that 36 of the ALMA sources experience a significant flux boost from gravitational lensing ({mu}>1.1), but only six are strongly lensed and show multiple images. We introduce and make use of uvmcmcfit, a general-purpose and publicly available Markov chain Monte Carlo visibility-plane analysis tool to analyze the source properties. Combined with our previous work on brighter Herschel sources, the lens models presented here tentatively favor intrinsic number counts for DSFGs with a break near 8mJy at 880um and a steep fall-off at higher flux densities. Nearly 70% of the Herschel sources break down into multiple ALMA counterparts, consistent with previous research indicating that the multiplicity rate is high in bright sources discovered in single-dish submillimeter or FIR surveys. The ALMA counterparts to our Herschel targets are located significantly closer to each other than ALMA counterparts to sources found in the LABOCA ECDFS Submillimeter Survey. Theoretical models underpredict the excess number of sources with small separations seen in our ALMA sample. The high multiplicity rate and small projected separations between sources seen in our sample argue in favor of interactions and mergers plausibly driving both the prodigious emission from the brightest DSFGs as well as the sharp downturn above S880=8mJy.