- ID:
- ivo://CDS.VizieR/J/MNRAS/479/3509
- Title:
- LVHIS. far-infrared radio correlation
- Short Name:
- J/MNRAS/479/3509
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper we measure the far-infrared (FIR) and radio flux densities of a sample of 82 local gas-rich galaxies, including 70 "dwarf" galaxies (M_*_<10^9^M_{sun}_), from the Local Volume HI Survey (LVHIS), which is close to volume limited. It is found that LVHIS galaxies hold a tight linear FIR-radio correlation (FRC) over four orders of magnitude. However, for detected galaxies only, a trend of larger FIR-to-radio ratio with decreasing flux density is observed. We estimate the star formation rate by combining UV and mid-IR data using empirical calibration. It is confirmed that both FIR and radio emission are strongly connected with star formation but with significant non-linearity. Dwarf galaxies are found radiation deficient in both bands, when normalized by star formation rate. It urges a "conspiracy" to keep the FIR-to-radio ratio generally constant. By using partial correlation coefficient in Pearson definition, we identify the key galaxy properties associated with the FIR and radio deficiency. Some major factors, such as stellar mass surface density, will cancel out when taking the ratio between FIR and radio fluxes. The remaining factors, such as HI-to-stellar mass ratio and galaxy size, are expected to cancel each other due to the distribution of galaxies in the parameter space. Such cancellation is probably responsible for the "conspiracy" to keep the FRC alive.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJS/155/401
- Title:
- Magellanic clouds globular clusters ISOCAM obs.
- Short Name:
- J/ApJS/155/401
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Seventeen globular clusters in the Large and Small Magellanic Clouds were observed in the mid-infrared wavelength region with the ISOCAM instrument on board the Infrared Space Observatory (ISO). Observations were made using the broadband filters LW1, LW2, and LW10, corresponding to the effective wavelengths of 4.5, 6.7, and 12{mu}m, respectively. We present the photometry of point sources in each cluster, as well as their precise positions and finding charts.
- ID:
- ivo://CDS.VizieR/J/ApJ/741/68
- Title:
- Main Belt asteroids with WISE/NEOWISE. I.
- Short Name:
- J/ApJ/741/68
- Date:
- 01 Feb 2022 07:05:56
- Publisher:
- CDS
- Description:
- We present initial results from the Wide-field Infrared Survey Explorer (WISE), a four-band all-sky thermal infrared survey that produces data well suited for measuring the physical properties of asteroids, and the NEOWISE enhancement to the WISE mission allowing for detailed study of solar system objects. Using a NEATM thermal model fitting routine, we compute diameters for over 100000 Main Belt asteroids (MBAs) from their IR thermal flux, with errors better than 10%. We then incorporate literature values of visible measurements (in the form of the H absolute magnitude) to determine albedos. Using these data we investigate the albedo and diameter distributions of the Main Belt. As observed previously, we find a change in the average albedo when comparing the inner, middle, and outer portions of the Main Belt. We also confirm that the albedo distribution of each region is strongly bimodal. We observe groupings of objects with similar albedos in regions of the Main Belt associated with dynamical breakup families. Asteroid families typically show a characteristic albedo for all members, but there are notable exceptions to this.
- ID:
- ivo://CDS.VizieR/J/ApJ/692/422
- Title:
- MAMBO observations of SWIRE sources
- Short Name:
- J/ApJ/692/422
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on-off pointed MAMBO observations at 1.2mm of 61 Spitzer-selected star-forming galaxies from the Spitzer Wide Area Infrared Extragalactic Legacy survey (SWIRE). The sources are selected on the basis of bright 24um fluxes (F24um>0.4mJy) and of stellar dominated near-infrared spectral energy distributions in order to favor z~2 starburst galaxies. The average 1.2mm flux for the whole sample is 1.5+/-0.2mJy. Our analysis focuses on 29 sources in the Lockman Hole field where the average 1.2mm flux (1.9+/-0.3mJy) is higher than in other fields (1.1+/-0.2mJy). The analysis of the multiwavelength spectral energy distributions indicates that these sources are starburst galaxies with far-infrared luminosities from 10^12^ to 10^13.3^L_{sun}_, and stellar masses of ~0.2-6x10^11^M_{sun}_. Compared to submillimeter selected galaxies (SMGs), the SWIRE-MAMBO sources are among those with the largest 24um/1.2mm flux ratios. The origin of such large ratios is investigated by comparing the average mid-infrared spectra and the stacked far-infrared spectral energy distributions of the SWIRE-MAMBO sources and of SMGs.
- ID:
- ivo://CDS.VizieR/J/ApJ/606/664
- Title:
- MAMBO sources near NTT Deep Field
- Short Name:
- J/ApJ/606/664
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We discuss identifications for 18 sources from our Max-Planck- Millimeter-Bolometer (MAMBO) 1.2mm survey of the region surrounding the NTT Deep Field. We have obtained accurate positions from Very Large Array 1.4GHz interferometry, and in a few cases IRAM millimeter interferometry, and have also made deep BVRIzJK imaging at ESO.
- ID:
- ivo://CDS.VizieR/J/ApJ/901/159
- Title:
- MaNGA AGNs from WISE, Swift/BAT, NVSS & FIRST
- Short Name:
- J/ApJ/901/159
- Date:
- 21 Feb 2022 13:46:21
- Publisher:
- CDS
- Description:
- Accurate active galactic nucleus (AGN) identifications and spatially resolved host galaxy properties are a powerful combination for studies of the role of AGNs and AGN feedback in the coevolution of galaxies and their central supermassive black holes. Here, we present robust identifications of 406 AGNs in the first 6261 galaxies observed by the integral field spectroscopy survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA). Instead of using optical line flux ratios, which can be difficult to interpret in light of the effects of shocks and metallicity, we identify the AGNs via mid-infrared Wide-field Infrared Survey Explorer colors, Swift/BAT ultrahard X-ray detections, NVSS and FIRST radio observations, and broad emission lines in SDSS spectra. We subdivide the AGNs into radio-quiet and radio-mode AGNs, and examine the correlations of the AGN classes with host galaxy star formation rates and stellar populations. When compared to the radio-quiet AGN host galaxies, we find that the radio-mode AGN host galaxies are preferentially elliptical, lie further beneath the star-forming main sequence (with lower star formation rates at fixed galaxy mass), have older stellar populations, and have more negative stellar age gradients with galactocentric distance (indicating inside-out quenching of star formation). These results establish a connection between radio-mode AGNs and the suppression of star formation.
- ID:
- ivo://CDS.VizieR/J/A+A/614/A116
- Title:
- Masgomas-6 near-IR spectra
- Short Name:
- J/A+A/614/A116
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Recent near-infrared data have contributed to unveiling massive and obscured stellar populations in both new and previously known clusters in our Galaxy. These discoveries have lead us to view the Milky Way as an active star-forming machine. We look for young massive cluster candidates as over-densities of OB-type stars. The first search, focused on the Galactic direction l=38, resulted in the detection of two objects with a remarkable population of OB-type star candidates. With a modified version of the friends-of-friends algorithm AUTOPOP and using 2MASS and UKIDSS-GPS near-infrared (J, H, and K) photometry for one of our cluster candidates (Masgomas-6) we selected 30 stars for multi-object and long-slit H and K band spectroscopy. With the spectral classification and the near-infrared photometric data, we derive individual distance, extinction, and radial velocity. Of the 30 spectroscopically observed stars, 20 are classified as massive stars, including OB-types (dwarfs, giants and supergiants), two red supergiants, two Wolf-Rayets (WR122-11 and the new WR122-16), and one transitional object (the LBV candidate IRAS 18576+0341). The individual distances and radial velocities do not agree with a single cluster, indicating that we are observing two populations of massive stars in the same line of sight: Masgomas-6a and Masgomas-6b. The first group of massive stars, located at 3.9kpc, contains both Wolf-Rayets and most of the OB-dwarfs; the second group, located at 9.6kpc, hosts the LBV candidate and an evolved population of supergiants. We are able to identify massive stars at two Galactic arms, but we cannot clearly identify whether these massive stars form clusters or associations.
- ID:
- ivo://CDS.VizieR/II/246
- Title:
- 2MASS All-Sky Catalog of Point Sources
- Short Name:
- II/246
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Two Micron All Sky Survey (2MASS) project is designed to close the gap between our current technical capability and our knowledge of the near-infrared sky. In addition to providing a context for the interpretation of results obtained at infrared and other wavelengths, 2MASS will provide direct answers to immediate questions on the large-scale structure of the Milky Way and the Local Universe. To achieve these goals, 2MASS is uniformly scanning the entire sky in three near-infrared bands to detect and characterize point sources brighter than about 1 mJy in each band, with signal-to-noise ratio (SNR) greater than 10, using a pixel size of 2.0". This will achieve an 80,000-fold improvement in sensitivity relative to earlier surveys. 2MASS uses two new, highly-automated 1.3-m telescopes, one at Mt. Hopkins, AZ, and one at CTIO, Chile. Each telescope is equipped with a three-channel camera, each channel consisting of a 256x256 array of HgCdTe detectors, capable of observing the sky simultaneously at J (1.25 {mu}m), H (1.65 {mu}m), and Ks (2.17 {mu}m), to a 3{sigma} limiting sensitivity of 17.1, 16.4 and 15.3mag in the three bands. The 2MASS arrays image the sky while the telescopes scan smoothly in declination at a rate of ~1' per second. The 2MASS data "tiles" are 6 deg. long in the declination direction and one camera frame (8.5') wide. The camera field-of-view shifts by ~1/6 of a frame in declination from frame-to-frame. The camera images each point on the sky six times for a total integration time of 7.8 s, with sub-pixel "dithering", which improves the ultimate spatial resolution of the final Atlas Images. The University of Massachusetts (UMass) is responsible for the overall management of the project, and for developing the infrared cameras and on-site computing systems at both facilities. The Infrared Processing and Analysis Center (IPAC) is responsible for all data processing through the Production Pipeline, and construction and distribution of the data products. The 2MASS project involves the participation of members of the Science Team from several different institutions. The 2MASS project is funding by the National Aeronautics and Space Administration (NASA) and the National Science Foundation (NSF).
- ID:
- ivo://CDS.VizieR/II/241
- Title:
- 2MASS Catalog Incremental Data Release
- Short Name:
- II/241
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Two Micron All Sky Survey (2MASS) project is designed to close the gap between our current technical capability and our knowledge of the near-infrared sky. In addition to providing a context for the interpretation of results obtained at infrared and other wavelengths, 2MASS will provide direct answers to immediate questions on the large-scale structure of the Milky Way and the Local Universe. To achieve these goals, 2MASS is uniformly scanning the entire sky in three near-infrared bands to detect and characterize point sources brighter than about 1 mJy in each band, with signal-to-noise ratio (SNR) greater than 10, using a pixel size of 2.0". This will achieve an 80,000-fold improvement in sensitivity relative to earlier surveys. 2MASS uses two new, highly-automated 1.3-m telescopes, one at Mt. Hopkins, AZ, and one at CTIO, Chile. Each telescope is equipped with a three-channel camera, each channel consisting of a 256x256 array of HgCdTe detectors, capable of observing the sky simultaneously at J (1.25 {mu}m), H (1.65 {mu}m), and Ks (2.17 {mu}m), to a 3{sigma} limiting sensivity of 17.1, 16.4 and 1.3mag in thge three bands. The 2MASS arrays image the sky while the telescopes scan smoothly in declination at a rate of ~1' per second. The 2MASS data "tiles" are 6{deg} long in the declination direction and one camera frame (8.5') wide. The camera field-of-view shifts by ~1/6 of a frame in declination from frame-to-frame. The camera images each point on the sky six times for a total integration time of 7.8 s, with sub-pixel "dithering", which improves the ultimate spatial resolution of the final Atlas Images. The University of Massachusetts (UMass) is responsible for the overall management of the project, and for developing the infrared cameras and on-site computing systems at both facilities. The Infrared Processing and Analysis Center (IPAC) is responsible for all data processing through the Production Pipeline, and construction and distribution of the data products. The 2MASS project involves the participation of members of the Science Team from several different institutions. The 2MASS project is funding by the National Aeronautics and Space Administration (NASA) and the National Science Foundation (NSF).
- ID:
- ivo://CDS.VizieR/J/AJ/127/501
- Title:
- 2MASS counterparts for OH/IR stars
- Short Name:
- J/AJ/127/501
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The positions of the IRAS counterparts to the 420 OH/IR stars in the Arecibo sky (0{deg}<{delta}<+38{deg}) are usually accurate to better than 10". But every star has recently been observed by the Two Micron All Sky Survey (2MASS, <II/246>), which provides 0.2" quality positions, while those with |b|<=4.5{deg} have also been observed by the Midcourse Space Experiment (MSX, <V/114>), which provides ~2" quality positions. We use the MSX and/or IRAS coordinates to guide us to 2MASS counterparts for the 134 Arecibo OH/IR stars with images in the second release of the 2MASS Point Source Catalog. An unexpected by-product of having the J-H versus H-K_s_ plot generated from the 2MASS fluxes is the realization that most (~85%) of the redder OH/IR stars have detached circumstellar shells. We identify five objects that probably, by contrast, have "normal" shells, and we confirm the status of AU Vul as a protoplanetary nebula.