We present the results of ammonia observations towards 66 massive star forming regions identified by the Red Midcourse Space Experiment Source survey. We have used the Green Bank Telescope and the K-Band Focal Plane Array to map the ammonia (NH_3_) (1,1) and (2,2) inversion emission at a resolution of 30 arcsec in 8 arcmin regions towards the positions of embedded massive star formation. We have identified a total of 115 distinct clumps, approximately two-thirds of which are associated with an embedded massive young stellar object or compact HII region, while the others are classified as quiescent. There is a strong spatial correlation between the peak NH3 emission and the presence of embedded objects. We derive the spatial distribution of the kinetic gas temperatures, line widths, and NH3 column densities from these maps, and by combining these data with dust emission maps we estimate clump masses, H_2_ column densities and ammonia abundances. The clumps have typical masses of ~1000M_{sun}_ and radii ~0.5pc, line widths of ~2km/s and kinetic temperatures of ~16-20K. We find no significant difference between the sizes and masses of the star-forming and quiescent subsamples; however, the distribution maps reveal the presence of temperature and line width gradients peaking towards the centre for the star-forming clumps while the quiescent clumps show relatively uniform temperatures and line widths throughout. Virial analysis suggests that the vast majority of clumps are gravitationally bound and are likely to be in a state of global free fall in the absence of strong magnetic fields. The similarities between the properties of the two subsamples suggest that the quiescent clumps are also likely to form massive stars in the future, and therefore provide an excellent opportunity to study the initial conditions of massive pre-stellar and protostellar clumps.
The Red MSX Source (RMS) survey is an ongoing multi-wavelength observational programme designed to return a large, well-selected sample of massive young stellar objects (MYSOs). We have identified ~2000 MYSO candidates located throughout the Galaxy by comparing the colours of MSX and 2MASS point sources to those of known MYSOs. The aim of these follow-up observations is to identify other objects with similar colours such as ultra compact (UC) HII regions, evolved stars and planetary nebulae (PNe) and distinguish between genuine MYSOs and nearby low-mass YSOs. To identify the populations of UCHII regions and PNe within the sample and examine their Galactic distribution. We have conducted high resolution radio continuum observations at 6cm towards 659 MYSO candidates in the northern hemisphere (10{deg}<l<250{deg}) using the Very Large Array (VLA). These observations have a spatial resolution of ~1-2" and typical image rms noise values of ~0.22mJy - sensitive enough to detect a HII region powered by B0.5 star at the far side of the Galaxy. In addition to these targeted observations we present archival data towards a further 315 RMS sources extracted from a previous VLA survey of the inner Galaxy.
Near-infrared H- and K-band spectra are presented for 247 objects, selected from the Red MSX Source (RMS) survey as potential young stellar objects (YSOs). 195 (~80%) of the targets are YSOs, of which 131 are massive YSOs (L_BOL_>5x10^3^L_{sun}_, M>8M_{sun}_). This is the largest spectroscopic study of massive YSOs to date, providing a valuable resource for the study of massive star formation. In this paper, we present our exploratory analysis of the data. The YSOs observed have a wide range of embeddedness (2.7<A_V_<114), demonstrating that this study covers minimally obscured objects right through to very red, dusty sources. Almost all YSOs show some evidence for emission lines, though there is a wide variety of observed properties. The most commonly detected lines are Br{gamma}, H_2_, fluorescent FeII, CO bandhead, [FeII] and HeI 2-1 1S-1P, in order of frequency of occurrence. In total, ~40% of the YSOs display either fluorescent FeII 1.6878{mu}m or CO bandhead emission (or both), indicative of a circumstellar disc; however, no correlation of the strength of these lines with bolometric luminosity was found. We also find that ~60% of the sources exhibit [FeII] or H_2_ emission, indicating the presence of an outflow. Three quarters of all sources have Br{gamma} in emission. A good correlation with bolometric luminosity was observed for both the Br{gamma} and H_2_ emission line strengths, covering 1<L_BOL_<3.5x10^5^L_{sun}_. This suggests that the emission mechanism for these lines is the same for low-, intermediate- and high-mass YSOs, i.e. high-mass YSOs appear to resemble scaled-up versions of low-mass YSOs.
The Red MSX Source (RMS) survey is an ongoing effort to return a large, well-selected sample of massive young stellar objects (MYSOs) within our Galaxy. 2000 candidates have been colour-selected from the Mid-course Space Experiment (MSX) point source catalogue (PSC). A series of ground-based follow-up observations are being undertaken in order to remove contaminant objects (ultra-compact HII (UCHII) regions, planetary nebulae (PN), evolved stars), and to begin characterising these MYSOs. As a part of these follow-up observations, high resolution (~1") mid-IR imaging aids the identification of contaminant objects which are resolved (UCHII regions, PN) as opposed to those which are unresolved (YSOs, evolved stars) as well as identifying YSOs near UCHII regions and other multiple sources. We present 10.4{mu}m imaging observations for 346 candidate MYSOs in the RMS survey in the Southern Hemisphere, primarily outside the region covered by the GLIMPSE Spitzer Legacy Survey. These were obtained using TIMMI2 on the ESO 3.6m telescope in La Silla, Chile. Our photometric accuracy is of order 0.05Jy, and our astrometric accuracy is 0.8", which is an improvement over the nominal 2" accuracy of the MSX PSC.
The Red MSX Source (RMS) survey is a multi-wavelength campaign of follow-up observations of a colour-selected sample of candidate massive young stellar objects (MYSOs) in the galactic plane. This survey is returning the largest well-selected sample of MYSOs to date, while identifying other dust contaminant sources with similar mid-infrared colours including a large number of new ultra-compact (UC) HII regions. To measure the far-infrared (IR) flux, which lies near the peak of the spectral energy distribution (SED) of MYSOs and UC HII regions, so that, together with distance information, the luminosity of these sources can be obtained.
We investigate the fraction of starbursts, starburst-active galactic nucleus (AGN) composites, Seyferts, and low-ionization narrow emission-line region galaxies (LINERs) as a function of infrared luminosity (LIR) and merger progress for ~500 infrared (IR)-selected galaxies. Using the new optical classifications afforded by the extremely large data set of the Sloan Digital Sky Survey, we find that the fraction of LINERs in IR-selected samples is rare (<5%) compared with other spectral types. The lack of strong IR emission in LINERs is consistent with recent optical studies suggesting that LINERs contain AGN with lower accretion rates than in Seyfert galaxies. Most previously classified IR-luminous LINERs are classified as starburst-AGN composite galaxies in the new scheme. Starburst-AGN composites appear to "bridge" the spectral evolution from starburst to AGN in ULIRGs. The relative strength of the AGN versus starburst activity shows a significant increase at high IR luminosity. In ULIRGs (LIR>10^12^L_{sun}_), starburst-AGN composite galaxies dominate at early-intermediate stages of the merger, and AGN galaxies dominate during the final merger stages.
This paper reports on results of the analysis of the first M 31 survey with the ROSAT PSPC performed in July 1991. Within the =~ 6.3deg^2^ field of view we detected 396 individual X-ray sources with (0.1keV-2.4keV) fluxes ranging from =~ 5x10^-15^erg/cm^2^/s^ to =~ 4x10^-12^erg/cm^2^/s. Of these 396 sources, 43 have be en tentatively identified with foreground stars, 29 with globular clusters, 17 with supernova remnants, 3 with other galaxies (including M 32), and 3 with radio sources. A detailed analysis of the integral flux distribution of the sources shows that approximately one fifth are likely to be background objects. By comparison with the results of the Einstein M 31 survey, we find 327 newly detected sources, 15 moderately variable sources, 3 bright and 6 faint possible transient sources. For those sources in M 31, the observed luminosities range from =~ 3x10^35^erg/s to =~ 2x10^38^erg/s (at 690kpc). The total (0.1keV-2.4keV) luminosity of M 31 is (2.9+/-0.3)x10^39^erg/s, roughly one third of which is from the bulge and two thirds of which are from the disk. The luminosity of a diffuse component within the bulge region is estimated to be less than 3.2x10^38^erg/s. An explanation in terms of hot gaseous emission leads to a maximum total gas mass of 1.7x10^6^M_{sun}_. We find that the integral luminosity distribution of sources associated with globular clusters is similar to that of the Milky Way. Finally, the results of spectral fits to 56 of the brightest sources are discussed; we classify 15 objects as "supersoft sources" according to their spectral characteristics.
The 120000 X-ray sources detected in the RASS II processing of the ROSAT All-Sky Survey are correlated with the 14315 IRAS galaxies selected from the IRAS Point Source Catalogue: 372 IRAS galaxies show X-ray emission within a distance of 100 arcsec from the infrared position. By inspecting the structure of the X-ray emission in overlays on optical images we quantify the likelihood that the X-rays originate from the IRAS galaxy. For 197 objects the soft X-ray emission is very likely associated with the IRAS galaxy. Their soft X-ray properties are determined and compared with their far-infrared emission.
This compilation is the fourth data release from the R-Process Alliance (RPA) search for r-process-enhanced stars and the second release based on "snapshot" high-resolution (R~30000) spectra collected with the du Pont 2.5m Telescope. In this data release, we propose a new delineation between the r-I and r-II stellar classes at [Eu/Fe]=+0.7, instead of the empirically chosen [Eu/Fe]=+1.0 level previously in use, based on statistical tests of the complete set of RPA data released to date. We also statistically justify the minimum level of [Eu/Fe] for definition of the r-I stars, [Eu/Fe]>+0.3. Redefining the separation between r-I and r-II stars will aid in the analysis of the possible progenitors of these two classes of stars and determine whether these signatures arise from separate astrophysical sources at all. Applying this redefinition to previous RPA data, the number of identified r-II and r-I stars changes to 51 and 121, respectively, from the initial set of data releases published thus far. In this data release, we identify 21 new r-II, 111 new r-I (plus 3 re-identified), and 7 new (plus 1 re-identified) limited-r stars out of a total of 232 target stars, resulting in a total sample of 72 new r-II stars, 232 new r-I stars, and 42 new limited-r stars identified by the RPA to date.
We present the most comprehensive red supergiant (RSG) sample for the Small Magellanic Cloud (SMC) to date, including 1239 RSG candidates. The initial sample was derived based on a source catalog for the SMC with conservative ranking. Additional spectroscopic RSGs were retrieved from the literature, and RSG candidates were selected based on the inspection of Gaia and 2MASS color-magnitude diagrams (CMDs). We estimate that there are in total ~1800 or more RSGs in the SMC. We purify the sample by studying the infrared CMDs and the variability of the objects, though there is still an ambiguity between asymptotic giant branch stars (AGBs) and RSGs at the red end of our sample. One heavily obscured target was identified based on multiple near-IR (NIR) and mid-IR (MIR) CMDs. The investigation of color-color diagrams (CCDs) shows that there are fewer RSGs candidates (~4%) showing PAH emission features compared to the Milky Way and LMC (~15%). The MIR variability of RSG sample increases with luminosity. We separate the RSG sample into two subsamples (risky and safe), and identify one M5e AGB star in the risky subsample based on simultaneous inspection of variabilities, luminosities, and colors. The degeneracy of mass loss rate (MLR), variability, and luminosity of the RSG sample is discussed, indicating that most of the targets with high variability are also the bright ones with high MLR. Some targets show excessive dust emission, which may be related to previous episodic mass loss events. We also roughly estimate the total gas and dust budget produced by entire RSG population as ~1.9^+2.4^_-1.1_x10^-6^M_{sun}_/yr in the most conservative case, according to the derived MLR from IRAC1-IRAC4 color. Based on the MIST models, we derive a linear relation between T_eff_ and observed J-Ks color with reddening correction for the RSG sample. By using a constant bolometric correction and this relation, the Geneva evolutionary model is compared with our RSG sample, showing a good agreement and a lower initial mass limit of ~7M_{sun}_ for the RSG population. Finally, we compare the RSG sample in the SMC and the LMC. Despite the incompleteness of LMC sample in the faint end, the result indicates that the LMC sample always shows redder color (except for the IRAC1-IRAC2 and WISE1-WISE2 colors due to CO absorption) and higher variability than the SMC sample, which is likely due to a positive relation between MLR, variability and the metallicity.