- ID:
- ivo://CDS.VizieR/J/ApJS/247/11
- Title:
- RV photon limits of well-characterized F-M stars
- Short Name:
- J/ApJS/247/11
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The determination of extrasolar planet masses with the radial velocity (RV) technique requires spectroscopic Doppler information from the planet's host star, which varies with stellar brightness and temperature. We analyze the Doppler information in spectra from dwarfs of spectral types F-M utilizing empirical information from HARPS and CARMENES data and model spectra. We revisit the question of whether optical or near-infrared instruments are more efficient for RV observations in low-mass stars, and we come to the conclusion that an optical setup (BVR bands) is more efficient than a near-infrared one (YJHK) in dwarf stars hotter than 3200K. We publish a catalog of 46480 well-studied F-M dwarfs in the solar neighborhood, and we compare its distribution to more than 1 million stars from Gaia DR2. For all stars, we estimate the RV photon noise achievable in typical observations under the assumption of no activity jitter and slow rotation. We find that with an ESPRESSO-like instrument at an 8m telescope, a photon noise limit of 10cm/s or lower can be reached in more than 280 stars in a 5 minute observation. At 4m telescopes, a photon noise limit of 1m/s can be reached in a 10 minute exposure in approximately 10000 predominantly Sun-like stars with a HARPS-like (optical) instrument. The same applies to ~3000 stars for a red optical setup that covers the R and I bands and ~700 stars for a near-infrared instrument. For the latter two, many of the targets are nearby M dwarfs. Finally, we identify targets in which Earth-mass planets within the liquid water habitable zone can cause RV amplitudes comparable to the RV photon noise. Assuming the same exposure times as above, we find that an ESPRESSO-like instrument can reach this limit for 1M_{Earth}_ planets in more than 1000 stars. The optical, red optical, and near-infrared configurations reach the limit for 2M_{Earth}_ planets in approximately 500, 700, and 200 stars, respectively. An online tool is provided to estimate the RV photon noise as a function of stellar temperature and brightness and wavelength coverage.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/582/A66
- Title:
- SABOCA NGC 3603 IRS 9A images
- Short Name:
- J/A+A/582/A66
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The formation of massive stars and their arrival on the zero-age main-sequence occurs hidden behind dense clouds of gas and dust. In the giant HII region NGC 3603, the radiation of a young cluster of OB stars has dispersed dust and gas in its vicinity. At a projected distance of 2.5pc from the cluster, a bright mid-infrared (mid-IR) source (IRS 9A) was identified as a massive young stellar object (MYSO), located on the side of a molecular clump (MM2) of gas facing the cluster. We investigated the physical conditions in MM2, based on APEX sub-mm observations using the SABOCA and SHFI instruments, and archival ATCA 3mm continuum and CS spectral line data. We resolved MM2 into several compact cores, one of them closely associated with IRS 9A. These are likely to be infrared dark clouds because they do not show the typical hot-core emission lines and are mostly opaque against the mid-IR background. The compact cores have masses of up to several hundred times the solar mass and gas temperatures of about 50K, without evidence of internal ionizing sources. We speculate that IRS 9A is younger than the cluster stars, but is in an evolutionary state after the compact cores.
- ID:
- ivo://CDS.VizieR/J/ApJS/217/17
- Title:
- SAFIRES: Spitzer Archival FIR Extragalactic Survey
- Short Name:
- J/ApJS/217/17
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the Spitzer Archival Far-InfraRed Extragalactic Survey (SAFIRES). This program produces refined mosaics and source lists for all far-infrared (FIR) extragalactic data taken during the more than six years of the cryogenic operation of the Spitzer Space Telescope. The SAFIRES products consist of FIR data in two wavelength bands (70 and 160{mu}m) across approximately 180 square degrees of sky, with source lists containing far-infrared fluxes for almost 40000 extragalactic point sources. Thus, SAFIRES provides a large, robust archival far-infrared data set suitable for many scientific goals.
- ID:
- ivo://CDS.VizieR/II/305
- Title:
- SAGE LMC and SMC IRAC Source Catalog
- Short Name:
- II/305
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The SAGE project is a Cycle 2 legacy program on the Spitzer Space Telescope, entitled, "Spitzer Survey of the Large Magellanic Cloud: Surveying the Agents of a Galaxy's Evolution (SAGE)", with Margaret Meixner (STScI) as the PI. The project overview and initial results are described in a paper by Meixner et al. (2006AJ....132.2268M). The Catalog is a highly reliable list of 6.4 million sources. Faint limits for SAGE are 18.1, 17.5, 15.3, and 14.2 for IRAC 3.6, 4.5, 5.8, 8.0 um, respectively. The SAGE-SMC project is a Cycle 4 legacy program on the Spitzer Space Telescope, entitled, "SAGE-SMC: Surveying the Agents of Galaxy Evolution in the Tidally-Disrupted, Low-Metallicity Small Magellanic Cloud", with Karl Gordon (STScI) as the PI. The project overview and initial results are described in a paper by Gordon et al. (2011AJ....142..102G). The Catalog is a highly reliable list of 2.0 million sources. Faint limits for SAGE-SMC are 18.3, 17.7, 15.7, and 14.5 for IRAC 3.6, 4.5, 5.8, 8.0 um, respectively. The archive tables are more complete but less reliable than the catalogs. IRAC Single Frame + Mosaic Photometry Catalog: a combination of mosaic photometry source list extracted from the combined Epoch 1 and Epoch 2 12 second frametime mosaics with all-epochs single frame source list, bandmerged with 2MASS or 2MASS6X. Detailed documentations are available from http://irsa.ipac.caltech.edu/data/SPITZER/SAGE/doc/ as SAGEDataProductsDescription_Sep09.pdf and from http://irsa.ipac.caltech.edu/data/SPITZER/SAGE-SMC/docs/ as sage-smc_delivery_apr11.pdf
- ID:
- ivo://CDS.VizieR/J/MNRAS/470/3250
- Title:
- SAGE LMC point-sources classification
- Short Name:
- J/MNRAS/470/3250
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Infrared Spectrograph (IRS) on the Spitzer Space Telescope observed nearly 800 point sources in the Large Magellanic Cloud (LMC), taking over 1000 spectra. 197 of these targets were observed as part of the SAGE-Spec Spitzer Legacy program; the remainder are from a variety of different calibration, guaranteed time and open time projects. We classify these point sources into types according to their infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information, using a decision-tree classification method. We then refine the classification using supplementary information from the astrophysical literature. We find that our IRS sample is comprised substantially of YSO and HII regions, post-main-sequence low-mass stars: (post-)asymptotic giant branch stars and planetary nebulae and massive stars including several rare evolutionary types. Two supernova remnants, a nova and several background galaxies were also observed. We use these classifications to improve our understanding of the stellar populations in the LMC, study the composition and characteristics of dust species in a variety of LMC objects, and to verify the photometric classification methods used by mid-IR surveys. We discover that some widely used catalogues of objects contain considerable contamination and others are missing sources in our sample.
- ID:
- ivo://CDS.VizieR/J/A+A/635/A54
- Title:
- SBNAF Infrared Database
- Short Name:
- J/A+A/635/A54
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper, we present the Small Bodies: Near and Far (SBNAF) Infrared Database, an easy-to-use tool intended to facilitate the modelling of thermal emission of small bodies of the Solar System. Our database collects measurements of thermal emissions for small Solar System targets that are otherwise available in scattered sources and provides a complete description of the data, including all information necessary to perform direct scientific analyses and without the need to access additional external resources. This public database contains representative data of asteroid observations of large surveys (e.g. AKARI, IRAS, and WISE) as well as a collection of small body observations of infrared space telescopes (e.g. the Herschel Space Observatory) and provides a web interface to access this data (https://ird.konkoly.hu).We also provide an example for the direct application of the database and show how it can be used to estimate the thermal inertia of specific populations, e.g. asteroids within a given size range. We show how different scalings of thermal inertia with heliocentric distance (i.e. temperature) may affect our interpretation of the data and discuss why the widely-used radiative conductivity exponent (alpha=-3/4) might not be adequate in general, as suggested in previous studies.
- ID:
- ivo://CDS.VizieR/J/ApJ/820/82
- Title:
- S2CLS: multiwavelength counterparts to SMGs
- Short Name:
- J/ApJ/820/82
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present multiwavelength identifications for the counterparts of 1088 submillimeter sources detected at 850{mu}m in the SCUBA-2 Cosmology Legacy Survey (S2CLS) study of the UKIRT Infrared Deep Sky Survey-Ultra-Deep Survey (UDS) field. By utilizing an Atacama Large Millimeter Array (ALMA) pilot study on a subset of our bright SCUBA-2 sample as a training set, along with the deep optical-near-infrared (OIR) data available in this field, we develop a novel technique, Optical-IR Triple Color (OIRTC), using z-K, K-[3.6], [3.6]-[4.5] colors to select the candidate submillimeter galaxy (SMG) counterparts. By combining radio identification and the OIRTC technique, we find counterpart candidates for 80% of the Class = 1 >=4{sigma} SCUBA-2 sample, defined as those that are covered by both radio and OIR imaging and the base sample for our scientific analyses. Based on the ALMA training set, we expect the accuracy of these identifications to be 82%+/-20%, with a completeness of 69%+/-16%, essentially as accurate as the traditional p-value technique but with higher completeness. We find that the fraction of SCUBA-2 sources having candidate counterparts is lower for fainter 850{mu}m sources, and we argue that for follow-up observations sensitive to SMGs with S_850_>~1mJy across the whole ALMA beam, the fraction with multiple counterparts is likely to be >40% for SCUBA-2 sources at S_850_>~4mJy. We find that the photometric redshift distribution for the SMGs is well fit by a lognormal distribution, with a median redshift of z=2.3+/-0.1. After accounting for the sources without any radio and/or OIRTC counterpart, we estimate the median redshift to be z=2.6+/-0.1 for SMGs with S_850_>1mJy. We also use this new large sample to study the clustering of SMGs and the far-infrared properties of the unidentified submillimeter sources by stacking their Herschel SPIRE far-infrared emission.
- ID:
- ivo://CDS.VizieR/J/MNRAS/379/1571
- Title:
- SCUBA Half-Degree Extragalactic Survey. IV
- Short Name:
- J/MNRAS/379/1571
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the redshift distribution of the Submillimetre Common-User Bolometer Array (SCUBA) Half Degree Survey (SHADES) galaxy population based on the rest-frame radio-mm-far-infrared (FIR) colours of 120 robustly detected 850um sources in the Lockman Hole East (LH) and Subaru XMM-Newton Deep Field (SXDF). The redshift distribution derived from the full spectral energy distribution (SED) information is shown to be narrower than that determined from the radiosub-mm spectral index, as more photometric bands contribute to a higher redshift accuracy.
- ID:
- ivo://CDS.VizieR/J/ApJ/832/78
- Title:
- SCUBA-2 & LABOCA obs. of HATLAS ultrared galaxies
- Short Name:
- J/ApJ/832/78
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Until recently, only a handful of dusty, star-forming galaxies (DSFGs) were known at z>4, most of them significantly amplified by gravitational lensing. Here, we have increased the number of such DSFGs substantially, selecting galaxies from the uniquely wide 250, 350, and 500{mu}m Herschel-ATLAS imaging survey on the basis of their extremely red far-infrared colors and faint 350 and 500{mu}m flux densities, based on which, they are expected to be largely unlensed, luminous, rare, and very distant. The addition of ground-based continuum photometry at longer wavelengths from the James Clerk Maxwell Telescope and the Atacama Pathfinder Experiment allows us to identify the dust peak in their spectral energy distributions (SEDs), with which we can better constrain their redshifts. We select the SED templates that are best able to determine photometric redshifts using a sample of 69 high-redshift, lensed DSFGs, then perform checks to assess the impact of the CMB on our technique, and to quantify the systematic uncertainty associated with our photometric redshifts, {sigma}=0.14(1+z), using a sample of 25 galaxies with spectroscopic redshifts, each consistent with our color selection. For Herschel-selected ultrared galaxies with typical colors of S_500_/S_250_~2.2 and S_500_/S_350_~1.3 and flux densities, S500~50mJy, we determine a median redshift, z_phot_=3.66, an interquartile redshift range, 3.30-4.27, with a median rest-frame 8-1000{mu}m luminosity, L_IR_, of 1.3x10^13^L_{sun}_. A third of the galaxies lie at z>4, suggesting a space density, {rho}_z>4_, of ~6x10^-7^Mpc^-3^. Our sample contains the most luminous known star-forming galaxies, and the most overdense cluster of starbursting proto-ellipticals found to date.
- ID:
- ivo://CDS.VizieR/J/MNRAS/436/1919
- Title:
- SCUBA observations of COSMOS galaxies
- Short Name:
- J/MNRAS/436/1919
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present deep 450{mu}m and 850{mu}m observations of a large, uniformly covered 394arcmin^2^ area in the Cosmic Evolution Survey (COSMOS) field obtained with the Scuba-2 instrument on the James Clerk Maxwell Telescope (JCMT). We achieve root-mean-square noise values of {sigma}_450_=4.13mJy and {sigma}_850_=0.80mJy. The differential and cumulative number counts are presented and compared to similar previous works. Individual point sources are identified at >3.6{sigma} significance, a threshold corresponding to a 3-5% sample contamination rate. We identify 78 sources at 450{mu}m and 99 at 850{mu}m, with flux densities S_450_=13-37mJy and S_850_=2-16mJy. Only 62-76% of 450{mu}m sources are 850{mu}m detected and 61-81% of 850{mu}m sources are 450{mu}m detected. The positional uncertainties at 450{mu}m are small (1-2.5 arcsec) and therefore allow a precise identification of multiwavelength counterparts without reliance on detection at 24{mu}m or radio wavelengths; we find that only 44% of 450{mu}m sources and 60% of 850{mu}m sources have 24{mu}m or radio counterparts. 450{mu}m selected galaxies peak at <z>=1.95+/-0.19 and 850{mu}m selected galaxies peak at <z>=2.16+/-0.11. The two samples occupy similar parameter space in redshift and luminosity, while their median SED peak wavelengths differ by ~20-50{mu}m (translating to {Delta}T_dust_=8-12K, where 450{mu}m selected galaxies are warmer). The similarities of the 450{mu}m and 850{mu}m populations, yet lack of direct overlap between them, suggests that submillimetre surveys conducted at any single far-infrared wavelength will be significantly incomplete (>~30%) at censusing infrared-luminous star formation at high z.