- ID:
- ivo://CDS.VizieR/J/ApJ/669/959
- Title:
- Warm molecular hydrogen in SINGS galaxy sample
- Short Name:
- J/ApJ/669/959
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Results on the properties of warm molecular hydrogen in 57 normal galaxies are derived from measurements of H_2_ rotational transitions, obtained as part of SINGS. This study extends previous extragalactic surveys of emission lines of H_2_ to fainter and more common systems (LFIR = 10^7^-6x10^10^L_{sun}_). The 17um S(1) transition is securely detected in the nuclear regions of 86% of galaxies with stellar masses above 10^9.5^M_{sun}_.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/766/114
- Title:
- Water and methanol masers in G75.78+0.34
- Short Name:
- J/ApJ/766/114
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present subarcsecond observations toward the massive star-forming region G75.78+0.34. We used the Very Large Array to study the centimeter continuum and H_2_O and CH_3_OH maser emission, and the Owens Valley Radio Observatory and Submillimeter Array to study the millimeter continuum and recombination lines (H40{alpha} and H30{alpha}). We found radio continuum emission at all wavelengths, coming from three components: (1) a cometary ultracompact (UC) H II region with an electron density ~3.7x10^4^/cm3, excited by a B0 type star, and with no associated dust emission; (2) an almost unresolved UCH II region (EAST), located ~6" to the east of the cometary UCH II region, with an electron density ~1.3x10^5^/cm3, and associated with a compact dust clump detected at millimeter and mid-infrared wavelengths; and (3) a compact source (CORE), located ~2" to the southwest of the cometary arc, with a flux density increasing with frequency, and embedded in a dust condensation of 30M_{sun}_. The CORE source is resolved into two compact and unresolved sources which can be well fit by two homogeneous hypercompact H II regions each one photoionized by a B0.5 zero-age main sequence star, or by free-free radiation from shock-ionized gas resulting from the interaction of a jet/outflow system with the surrounding environment. The spatial distribution and kinematics of water masers close to the CORE-N and S sources, together with excess emission at 4.5{mu}m and the detected dust emission, suggest that the CORE source is a massive protostar driving a jet/outflow.
- ID:
- ivo://CDS.VizieR/J/ApJ/707/1
- Title:
- Water and Methanol masers in NGC 6334I(N)
- Short Name:
- J/ApJ/707/1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a high-resolution, multi-wavelength study of the massive protostellar cluster NGC 6334 I(N) that combines new spectral line data from the Submillimeter Array (SMA) and VLA with a re-analysis of archival VLA continuum data, Two Micron All Sky Survey and Spitzer images. As shown previously, the brightest 1.3mm source SMA1 contains substructure at subarcsecond resolution, and we report the first detection of SMA1b at 3.6cm along with a new spatial component at 7mm (SMA1d). We find SMA1 (aggregate of sources a, b, c, and d) and SMA4 to be comprised of free-free and dust components, while SMA6 shows only dust emission. Our 1.5" resolution 1.3mm molecular line images reveal substantial hot-core line emission toward SMA1 and to a lesser degree SMA2. We find CH_3_OH rotation temperatures of 165+/-9K and 145+/-12K for SMA1 and SMA2, respectively. We estimate a diameter of 1400AU for the SMA1 hot-core emission, encompassing both SMA1b and SMA1d, and speculate that these sources comprise a >~800AU separation binary that may explain the previously suggested precession of the outflow emanating from the SMA1 region. Compact line emission from SMA4 is weak, and none is seen toward SMA6. The LSR velocities of SMA1, SMA2, and SMA4 all differ by 1-2km/s. Outflow activity from SMA1, SMA2, SMA4, and SMA6 is observed in several molecules including SiO(5-4) and IRAC 4.5um emission; 24um emission from SMA4 is also detected. Eleven water maser groups are detected, eight of which coincide with SMA1, SMA2, SMA4, and SMA6, while two others are associated with the Sandell source SM2. We also detect a total of 83 Class I CH_3_OH 44GHz maser spots which likely result from the combined activity of many outflows. Our observations paint the portrait of multiple young hot cores in a protocluster prior to the stage where its members become visible in the near-infrared.
- ID:
- ivo://CDS.VizieR/J/ApJ/764/61
- Title:
- Water maser and NH_3_ survey of GLIMPSE EGOs
- Short Name:
- J/ApJ/764/61
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a Nobeyama 45m H_2_O maser and NH_3_ survey of all 94 northern GLIMPSE extended green objects (EGOs), a sample of massive young stellar objects (MYSOs) identified based on their extended 4.5{mu}m emission. We observed the NH_3_(1,1), (2,2), and (3,3) inversion lines, and detected emission toward 97%, 63%, and 46% of our sample, respectively (median rms~50mK). The H_2_O maser detection rate is 68% (median rms~0.11Jy). The derived H_2_O maser and clump-scale gas properties are consistent with the identification of EGOs as young MYSOs. To explore the degree of variation among EGOs, we analyze subsamples defined based on mid-infrared (MIR) properties or maser associations. H_2_O masers and warm dense gas, as indicated by emission in the higher-excitation NH_3_ transitions, are most frequently detected toward EGOs also associated with both Class I and II CH_3_OH masers. Ninety-five percent (81%) of such EGOs are detected in H_2_O (NH_3_(3,3)), compared to only 33% (7%) of EGOs without either CH_3_OH maser type. As populations, EGOs associated with Class I and/or II CH_3_OH masers have significantly higher NH_3_ line widths, column densities, and kinetic temperatures than EGOs undetected in CH_3_OH maser surveys. However, we find no evidence for statistically significant differences in H_2_O maser properties (such as maser luminosity) among any EGO subsamples. Combining our data with the 1.1mm continuum Bolocam Galactic Plane Survey, we find no correlation between isotropic H_2_O maser luminosity and clump number density. H_2_O maser luminosity is weakly correlated with clump (gas) temperature and clump mass.
- ID:
- ivo://CDS.VizieR/J/ApJ/769/48
- Title:
- Water maser in Orion-KL with Herschel
- Short Name:
- J/ApJ/769/48
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using the Herschel Space Observatory's Heterodyne Instrument for the Far-Infrared, we have performed mapping observations of the 620.701GHz 5_32_-4_41_ transition of ortho-H_2_O within a ~1.5'x1.5' region encompassing the Kleinmann-Low nebula in Orion (Orion-KL), and pointed observations of that transition toward the Orion South condensation and the W49N region of high-mass star formation. Using the Effelsberg 100m radio telescope, we obtained ancillary observations of the 22.23508GHz 6_16_-5_23_ water maser transition; in the case of Orion-KL, the 621GHz and 22GHz observations were carried out within 10days of each other. The 621GHz water line emission shows clear evidence for strong maser amplification in all three sources, exhibiting narrow (~1km/s FWHM) emission features that are coincident (kinematically and/or spatially) with observed 22GHz features. Moreover, in the case of W49N --for which observations were available at three epochs spanning a 2yr period-- the spectra exhibited variability. The observed 621GHz/22GHz line ratios are consistent with a maser pumping model in which the population inversions arise from the combined effects of collisional excitation and spontaneous radiative decay, and the inferred physical conditions can plausibly arise in gas heated by either dissociative or non-dissociative shocks. The collisional excitation model also predicts that the 22GHz population inversion will be quenched at higher densities than that of the 621GHz transition, providing a natural explanation for the observational fact that 22GHz maser emission appears to be a necessary but insufficient condition for 621GHz maser emission.
- ID:
- ivo://CDS.VizieR/J/ApJ/826/24
- Title:
- Water masers in M31. I. Recombination lines
- Short Name:
- J/ApJ/826/24
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the results of a Green Bank Telescope survey for water masers, ammonia (1,1) and (2,2), and the H66{alpha} recombination line toward 506 luminous compact 24{mu}m emitting regions in the Andromeda Galaxy (M31). We include the 206 sources observed in the Darling water maser survey for completeness. The survey was sensitive enough to detect any maser useful for ~10{mu}as/yr astrometry. No new water masers, ammonia lines, or H66{alpha} recombination lines were detected individually or in spectral stacks reaching rms noise levels of ~3mJy and ~0.2mJy, respectively, in 3.1-3.3km/s channels. The lack of detections in individual spectra and in the spectral stacks is consistent with Galactic extrapolations. Contrary to previous assertions, there do not seem to be any additional bright water masers to be found in M31. The strong variability of water masers may enable new maser detections in the future, but variability may also limit the astrometric utility of known (or future) masers because flaring masers must also fade.
- ID:
- ivo://archive.stsci.edu/wuppe
- Title:
- Wisconsin Ultraviolet Photo-Polarimeter Experiment
- Short Name:
- WUPPE
- Date:
- 22 Jul 2020 21:33:04
- Publisher:
- Space Telescope Science Institute Archive
- Description:
- The Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE) was the spectropolarimetry component of the three ASTRO instruments that flew on Space Shuttle missions in December 1990 and March 1995. A halfwave spectropolarimeter provided medium resolution spectropolarimetry for research into the interstellar medium, hot stars, stars with circumstellar material, interacting binary stars, novae, solar system objects, and active galaxies. A Lyot analyzer obtained low resolution observations of faint targets, but due to calibration problems did not produce scientifically useful data. The WUPPE instrument provides a unique data set, one of the few providing polarimetric data in the ultraviolet portion of the spectrum.
- ID:
- ivo://CDS.VizieR/J/A+A/589/A44
- Title:
- W51 Main NH_3_ and CH_3_OH data cubes
- Short Name:
- J/A+A/589/A44
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper is the third in a series of NH_3_ multilevel imaging studies in well-known, high-mass star-forming regions. The main goal is to characterize kinematics and physical conditions of (hot and dense) circumstellar molecular gas around O-type young stars. We want to map at subarcsecond resolution highly excited inversion lines of NH_3_ in the high-mass star-forming region W51 Main (distance = 5.4kpc), which is an ideal target to constrain theoretical models of high-mass star formation. Using the Karl Jansky Very Large Array (JVLA), we mapped the hot and dense molecular gas in W51 Main with ~0.2"-0.3" angular resolution in five metastable (J = K) inversion transitions of ammonia (NH_3_): (J,K) = (6, 6), (7, 7), (9, 9), (10, 10), and (13, 13). These lines arise from energy levels between ~400K and ~1700K above the ground state. We also made maps of the (free-free) continuum emission at frequencies between 25 and 36GHz.
- ID:
- ivo://CDS.VizieR/J/A+AS/124/205
- Title:
- W3 star-forming region 345 GHz survey
- Short Name:
- J/A+AS/124/205
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Results are presented of the 345 GHz spectral survey toward three sources in the W 3 Giant Molecular Cloud: W 3 IRS4, W 3 IRS5 and W 3(H_2_O). Nearly 90% of the atmospheric window between 334 and 365GHz has been scanned using the James Clerk Maxwell Telescope (JCMT) down to a noise level of ~80mK per resolution element. These observations are complemented by a large amount of data in the 230GHz atmospheric window. From this data set physical conditions and beam-averaged column densities are derived for more than 14 chemically different species (over 24 different isotopes). The physical parameters derived in Paper I (Helmich et al., 1994A&A...283..626H) are confirmed by the analysis of the excitation of other species, although there is evidence that the silicon- and sulfur-bearing molecules exist in a somewhat denser and warmer environment. The densities are high, >=10^6^cm^-3^, in the three sources and the kinetic temperatures for the bulk of the gas range from 55K for IRS4 to 220K for W 3(H_2_O). The chemical differences between the three sources are very striking: silicon- and sulfur-bearing molecules such as SiO and SO_2_ are prominent toward IRS5, whereas organic molecules like CH_3_OH, CH_3_OCH_3_ and CH_3_OCHO are at least an order of magnitude more abundant toward W 3(H_2_O). Vibrationally excited molecules are also detected toward this source. Only simple molecules are found toward IRS4. The data provide constraints on the amount of deuterium fractionation and the ionization fraction in the observed regions as well. These chemical characteristics are discussed in the context of an evolutionary sequence, in which IRS5 is the youngest, W 3(H_2_O) somewhat older and IRS4, although still enigmatic, the oldest.
- ID:
- ivo://CDS.VizieR/J/ApJ/900/L10
- Title:
- X-band data of the GOTHAM Large Project for TMC-1
- Short Name:
- J/ApJ/900/L10
- Date:
- 15 Feb 2022 11:45:23
- Publisher:
- CDS
- Description:
- We present an overview of the GBT Observations of TMC-1: Hunting Aromatic Molecules Large Program on the Green Bank Telescope. This and a related program were launched to explore the depth and breadth of aromatic chemistry in the interstellar medium at the earliest stages of star formation, following our earlier detection of benzonitrile (c-C6H5CN) in TMC-1. In this work, details of the observations, use of archival data, and data reduction strategies are provided. Using these observations, the interstellar detection of propargyl cyanide (HCCCH2CN) is described, as well as the accompanying laboratory spectroscopy. We discuss these results, and the survey project as a whole, in the context of investigating a previously unexplored reservoir of complex, gas-phase molecules in pre-stellar sources. A series of companion papers describe other new astronomical detections and analyses.