- ID:
- ivo://CDS.VizieR/J/ApJ/803/97
- Title:
- Transitions of methyl formate toward Orion KL
- Short Name:
- J/ApJ/803/97
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We recently reported the first identification of rotational transitions of methyl formate (HCOOCH_3_) in the second torsionally excited state toward Orion Kleinmann-Low (KL), observed with the Nobeyama 45 m telescope. In combination with the identified transitions of methyl formate in the ground state and the first torsional excited state, it was found that there is a difference in rotational temperature and vibrational temperature, where the latter is higher. In this study, high spatial resolution analysis by using Atacama Large Millimeter/Submillimeter Array (ALMA) science verification data was carried out to verify and understand this difference. Toward the Compact Ridge, two different velocity components at 7.3 and 9.1 km/s were confirmed, while a single component at 7.3 km/s was identified toward the Hot Core. The intensity maps in the ground, first, and second torsional excited states have quite similar distributions. Using extensive ALMA data, we determined the rotational and vibrational temperatures for the Compact Ridge and Hot Core by the conventional rotation diagram method. The rotational temperature and vibrational temperatures agree for the Hot Core and for one component of the Compact Ridge. At the 7.3 km/s velocity component for the Compact Ridge, the rotational temperature was found to be higher than the vibrational temperature. This is different from what we obtained from the results by using the single-dish observation. The difference might be explained by the beam dilution effect of the single-dish data and/or the smaller number of observed transitions within the limited range of energy levels (<=30 K) of E_u_ in the previous study.
Number of results to display per page
Search Results
882. UBV photometry in W3
- ID:
- ivo://CDS.VizieR/J/AJ/129/393
- Title:
- UBV photometry in W3
- Short Name:
- J/AJ/129/393
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- It is generally believed that expanding superbubbles and mechanical feedback from massive stars trigger star formation, because there are numerous examples of superbubbles showing secondary star formation at their edges. However, although these systems show an age sequence, they do not provide strong evidence of a causal relationship. The W3/W4 Galactic star-forming complex suggests a three-generation hierarchy: the supergiant shell structures correspond to the oldest generation; these triggered the formation of IC 1795 in W3, the progenitor of a molecular superbubble that in turn triggered the current star-forming episodes in the embedded regions W3-North, W3-Main, and W3-OH. We present UBV photometry and spectroscopic classifications for IC 1795, which show an age of 3-5 Myr. This age is intermediate between the reported 6-20 Myr age of the supergiant shell system and the extremely young ages (10^4^-10^5^yr) for the embedded knots of the ultracompact HII regions, W3-North, W3-Main, and W3-OH. Thus, an age sequence is indeed confirmed for the entire W3/W4 hierarchical system. This therefore provides some of the first convincing evidence that superbubble action and mechanical feedback are indeed a triggering mechanism for star formation.
- ID:
- ivo://CDS.VizieR/J/ApJS/245/14
- Title:
- 8um cores in the spiral arms of nearby galaxies
- Short Name:
- J/ApJS/245/14
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Spitzer Space Telescope observations of 15 spiral galaxies show numerous dense cores at 8{mu}m that are revealed primarily in unsharp mask images. The cores are generally invisible in optical bands because of extinction, and they are also indistinct at 8{mu}m alone because of contamination by more widespread diffuse emission. Several hundred core positions, magnitudes, and colors from the four InfraRed Array Camera bands are measured and tabulated for each galaxy. The larger galaxies, which tend to have longer and more regular spiral arms, often have their infrared cores aligned along these arms, with additional cores in spiral arm spurs. Galaxies without regular spirals have their cores in more irregular spiral-like filaments, with typically only one or two cores per filament. Nearly every elongated emission feature has 8{mu}m cores strung out along its length. The occurrence of dense cores in long and thin filaments is reminiscent of filamentary star formation in the solar neighborhood, although on a scale 100 times larger in galaxies. The cores most likely form by gravitational instabilities and cloud agglomeration in the filaments. The simultaneous occurrence of several cores with regular spacings in some spiral arms suggests that in these cases, all of the cores formed at about the same time and the corresponding filaments are young. Total star formation rates for the galaxies correlate with the total embedded stellar masses in the cores with an average ratio corresponding to a possible age between 0.2 and 2Myr. This suggests that the identified cores are the earliest phase for most star formation.
884. UMIST database. 1995
- ID:
- ivo://CDS.VizieR/J/A+AS/121/139
- Title:
- UMIST database. 1995
- Short Name:
- J/A+AS/121/139
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the release of a new version of the UMIST database for astrochemistry. The database contains the rate coefficients of 3864 gas-phase reactions important in interstellar and circumstellar chemistry and involves 395 species and 12 elements. The previous (1990, Millar et al. 1991A&AS...87..585M) version of this database has been widely used by modellers. In addition to the rate coefficients, we also tabulate permanent electric dipole moments of the neutral species and heats of formation. A numerical model of the chemical evolution of a dark cloud is calculated and important differences to that calculated with the previous database noted.
- ID:
- ivo://CDS.VizieR/J/ApJ/870/104
- Title:
- 1-500um obs. of nearby luminous IR galaxies
- Short Name:
- J/ApJ/870/104
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The interstellar medium is a key ingredient that governs star formation in galaxies. We present a detailed study of the infrared (~1-500{mu}m) spectral energy distributions of a large sample of 193 nearby (z~<0.088) luminous infrared galaxies (LIRGs) covering a wide range of evolutionary stages along the merger sequence. The entire sample has been observed uniformly by 2MASS, WISE, Spitzer, and Herschel. We perform a multicomponent decomposition of the spectra to derive physical parameters of the interstellar medium, including the intensity of the interstellar radiation field and the mass and luminosity of the dust. We also constrain the presence and strength of nuclear dust heated by active galactic nuclei. The radiation field of LIRGs tends to have much higher intensity than that of quiescent galaxies, and it increases toward advanced merger stages as a result of the central concentration of the interstellar medium and star formation. The total gas mass is derived from the dust mass and the galaxy stellar mass. We find that the gas fraction of LIRGs is on average ~0.3 dex higher than that of main-sequence star-forming galaxies, rising moderately toward advanced merger stages. All LIRGs have star formation rates that place them above the galaxy star formation main sequence. Consistent with recent observations and numerical simulations, the global star formation efficiency of the sample spans a wide range, filling the gap between normal star-forming galaxies and extreme starburst systems.
- ID:
- ivo://CDS.VizieR/J/ApJS/186/406
- Title:
- 350um polarimetry from CSO
- Short Name:
- J/ApJS/186/406
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a summary of data obtained with the 350um polarimeter, Hertz, at the Caltech Submillimeter Observatory. We give tabulated results and maps showing polarization vectors and intensity contours. The summary includes over 4300 individual measurements in 56 Galactic sources and two galaxies. Of these measurements, 2153 have P>=3{sigma}_p_ statistical significance. The median polarization of the entire data set is 1.46%.
- ID:
- ivo://CDS.VizieR/J/A+A/405/999
- Title:
- Unidentified infrared bands (UIR)
- Short Name:
- J/A+A/405/999
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a set of 6-12{mu}m ISOPHOT-S spectra of the general interstellar medium of the Milky Way. This part of the spectrum is dominated by a series of strong, wide emission features commonly called the Unidentified Infrared Bands (UIR). The sampled area covers the inner Milky Way from l=-60{deg} to +60{deg} with a ten-degree step in longitude and nominal latitudes b=0{deg}, +/-1{deg}. For each grid position the actual observed direction was selected from IRAS 100{mu}m maps to minimize contamination by point sources and molecular clouds.
- ID:
- ivo://CDS.VizieR/J/ApJ/856/85
- Title:
- Unlocking CO depletion in protoplanetary disks. I.
- Short Name:
- J/ApJ/856/85
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- CO is commonly used as a tracer of the total gas mass in both the interstellar medium and in protoplanetary disks. Recently, there has been much debate about the utility of CO as a mass tracer in disks. Observations of CO in protoplanetary disks reveal a range of CO abundances, with measurements of low CO to dust mass ratios in numerous systems. One possibility is that carbon is removed from CO via chemistry. However, the full range of physical conditions conducive to this chemical reprocessing is not well understood. We perform a systematic survey of the time dependent chemistry in protoplanetary disks for 198 models with a range of physical conditions. We vary dust grain size distribution, temperature, comic-ray and X-ray ionization rates, disk mass, and initial water abundance, detailing what physical conditions are necessary to activate the various CO depletion mechanisms in the warm molecular layer. We focus our analysis on the warm molecular layer in two regions: the outer disk (100au) well outside the CO snowline and the inner disk (19au) just inside the midplane CO snowline. After 1Myr, we find that the majority of models have a CO abundance relative to H_2_ less than 10^-4^ in the outer disk, while an abundance less than 10^-5^ requires the presence of cosmic-rays. Inside the CO snowline, significant depletion of CO only occurs in models with a high cosmic-ray rate. If cosmic-rays are not present in young disks, it is difficult to chemically remove carbon from CO. Additionally, removing water prior to CO depletion impedes the chemical processing of CO. Chemical processing alone cannot explain current observations of low CO abundances. Other mechanisms must also be involved.
- ID:
- ivo://CDS.VizieR/J/ApJ/745/173
- Title:
- UV absorption sight lines of LMC and SMC
- Short Name:
- J/ApJ/745/173
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have determined column densities of H I and/or H_2_ for sight lines in the Magellanic Clouds from archival Hubble Space Telescope and Far-Ultraviolet Spectroscopic Explorer spectra of H I Ly{alpha} and H_2_Lyman-band absorption. Together with some similar data from the literature, we now have absorption-based N(H I) and/or N(H_2_) for 285 Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) sight lines (114 with a detection or limit for both species) - enabling more extensive, direct, and accurate determinations of molecular fractions, gas-to-dust ratios, and elemental depletions in these two nearby, low-metallicity galaxies. For sight lines where the N(H I) estimated from 21 cm emission is significantly higher than the value derived from Ly{alpha} absorption (presumably due to emission from gas beyond the target stars), integration of the 21 cm profile only over the velocity range seen in Na I or H_2_absorption generally yields much better agreement. Conversely, N(21 cm) can be lower than N(Ly{alpha}) by factors of 2-3 in some LMC sight lines - suggestive of small-scale structure within the 21 cm beam(s) and/or some saturation in the emission. The mean gas-to-dust ratios obtained from N(H_tot_)/E(B-V) are larger than in our Galaxy, by factors of 2.8-2.9 in the LMC and 4.1-5.2 in the SMC - i.e., factors similar to the differences in metallicity. The N(H_2_)/E(B-V) ratios are more similar in the three galaxies, but with considerable scatter within each galaxy. These data may be used to test models of the atomic-to-molecular transition at low metallicities and predictions of N(H_2_) based on comparisons of 21 cm emission and the IR emission from dust.
- ID:
- ivo://CDS.VizieR/J/ApJ/789/76
- Title:
- UV and IR properties for galaxies
- Short Name:
- J/ApJ/789/76
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Variations in the attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-{beta} relation), offered a widely used formula for correcting dust attenuation in galaxies, but the usability appears to be in doubt now because of considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies, we provide an interpretation of the deviation in the IRX-UV relation with variations in the attenuation law. From both theoretical and observational viewpoints, two components in the attenuation curve, the linear background and the 2175 {AA} bump, are suggested to be the parameters in addition to the stellar population age (addressed in the first paper of this series) in the IRX-UV function; different features in the attenuation curve are diagnosed for the galaxies in our sample. Nevertheless, it is often difficult to ascertain the attenuation law for galaxies in actual observations. Possible reasons for preventing the successful detection of the parameters in the attenuation curve are also discussed in this paper, including the degeneracy of the linear background and the 2175 {AA} bump in observational channels, the requirement for young and dust-rich systems to study, and the difficulty in accurate estimates of dust attenuations at different wavelength bands.