- ID:
- ivo://CDS.VizieR/J/PASJ/62/273
- Title:
- AKARI SMC photometry
- Short Name:
- J/PASJ/62/273
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We carried out near- to mid-infrared imaging and spectroscopic observations of patchy areas in the Small Magellanic Cloud using the Infrared Camera aboard AKARI. Two 100arcmin^2^ areas were imaged in 3.2, 4.1, 7, 11, 15, and 24um, and also spectroscopically observed in the wavelength range continuously from 2.5 to 13.4um. The spectral resolving power, {lambda}{Delta}{lambda}, values were about 20, 50, and 50 at 3.5, 6.6, and 10.6um, respectively. Other than the two 100arcmin^2^ areas, some patchy areas were imaged and/or spectroscopically observed as well. In this paper, we overview the observations and present a list of near- to mid-infrared photometric results, which lists ~12000 near-infrared and ~1800 mid-infrared bright point sources detected in the observed areas. The 10{sigma} limits are 16.50, 16.12, 13.28, 11.26, 9.62, and 8.76 in Vega magnitudes at 3.2, 4.1, 7, 11, 15, and 24um bands, respectively.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/641/A97
- Title:
- ALMA Magellanic Bridge A molecular clouds
- Short Name:
- J/A+A/641/A97
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Magellanic Bridge is a tidal feature located between both Magellanic Clouds, containing young stars formed in situ. Its proximity allows high-resolution studies of molecular gas, dust and star formation in a tidal, low metallicity environment. Our goal is to characterize gas and dust emission in Magellanic Bridge A, the source with the highest 870um excess of emission found in single dish surveys. Using the ALMA telescope including the Morita Array, we mapped with sub-parsec resolution a 3arcmin, field of view centered on the Magellanic Bridge A molecular cloud, in 1.3mm continuum emission and ^12^CO(2-1 line emission. This region was also mapped in continuum at 870um and in ^12^CO(2-1) line emission at ~6pc resolution with the APEX telescope. To study its dust properties, we also use archival Herschel and Spitzer data. We combine the ALMA and APEX ^12^CO(2-1) line cubes to study the molecular gas emission. Magallanic Bridge A breaks up into two distinct molecular clouds in dust and ^12^CO(2-1) emission, which we call North and South. Dust emission in the North source, according to our best parameters from fitting the far-infrared fluxes, is ~3K colder than in the South source in correspondence to its less developed star formation. Both dust sources present large submillimeter excesses in LABOCA data: according to our best fits the excess over the modified blackbody (MBB) fit to the Spitzer/Herschel continuum is E(870um)~7 and E(870um)~3 for the North and South sources respectively. Nonetheless, we do not detect the corresponding 1.3mm continuum with ALMA. Our limits are compatible with the extrapolation of the MBB fits and therefore we cannot independently confirm the excess at this longer wavelength. The ^12^CO(2-1) emission is concentrated in two parsec-sized clouds with virial masses around 400 and 700M_{sun}_ each. Their bulk volume densities are n(H_2_)~0.7-2.6x10^3^cm^-3^, larger than typical bulk densities of Galactic molecular clouds. The ^12^CO luminosity to H_2_ mass conversion factor {alpha}_CO_ is 6.5 and 15.3M_{sun}_/(K.(km/s)pc^2^) for the North and South clouds, calculated using their respective virial masses and ^12^CO(2-1) luminosities. Gas mass estimates from our MBB fits to dust emission yields masses M~1.3x10^3^M_{sun}_ and 2.9x10^3^M_{sun}_ for North and South respectively, a factor of ~4 larger than the virial masses we infer from ^12^CO.
- ID:
- ivo://CDS.VizieR/J/MNRAS/463/1332
- Title:
- Anomalous RRd stars in Magellanic Clouds
- Short Name:
- J/MNRAS/463/1332
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of a new subclass of double-mode RR Lyrae stars in the Large and Small Magellanic Clouds. The sample of 22 pulsating stars has been extracted from the latest edition of the Optical Gravitational Lensing Experiment collection of RR Lyrae variables in the Magellanic System. The stars pulsating simultaneously in the fundamental (F) and first-overtone (1O) modes have distinctly different properties than regular double-mode RR Lyrae variables (RRd stars). The P_1O_/P_F_ period ratios of our anomalous RRd stars are within a range of 0.725-0.738, while 'classical' double-mode RR Lyrae variables have period ratios in the range of 0.742-0.748. In contrast to the typical RRd stars, in the majority of the anomalous pulsators, the F-mode amplitudes are higher than the 1O-mode amplitudes. The light curves associated with the F-mode in the anomalous RRd stars show different morphology than the light curves of, both, regular RRd stars and single-mode RRab stars. Most of the anomalous double-mode stars show long-term modulations of the amplitudes (Blazhko-like effect). Translating the period ratios into the abundance parameter, Z, we find for our stars Z{in}(0.002, 0.005) - an order of magnitude higher values than typical for RR Lyrae stars. The mass range of the RRd stars inferred from the W_I_ versus P_F_ diagram is (0.55-0.75)M_{sun}_. These parameters cannot be accounted for with single star evolution assuming a Reimers-like mass-loss. Much greater mass-loss caused by interaction with other stars is postulated. We blame the peculiar pulsation properties of our stars to the parametric resonance instability of the 1O-mode to excitation of the F- and 2O-modes as with the inferred parameters of the stars 2{omega}_1O_~={omega}_F_+{omega}_2O_.
- ID:
- ivo://CDS.VizieR/J/MNRAS/460/650
- Title:
- Apsidal motions of 90 SMC eccentric binaries
- Short Name:
- J/MNRAS/460/650
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We examined light curves of 1138 stars brighter than 18.0mag in the I band and less than a mean magnitude error of 0.1mag in the V band from the Optical Gravitational Lensing Experiment (OGLE)-III eclipsing binary catalogue, and found 90 new binary systems exhibiting apsidal motion. In this study, the samples of apsidal motion stars in the Small Magellanic Cloud (SMC) were increased by a factor of about 3.0 than previously known. In order to determine the period of the apsidal motion for the binaries, we analysed in detail both the light curves and eclipse timings using the MACHO (MAssive Compact Halo Objects) and OGLE photometric data base. For the eclipse timing diagrams of the systems, new times of minimum light were derived from the full light curve combined at intervals of one year from the survey data. The new 90 binaries have apsidal motion periods in the range of 12-897yr. An additional short-term oscillation was detected in four systems (OGLE-SMC-ECL-1634, 1947, 3035, and 4946), which most likely arises from the existence of a third body orbiting each eclipsing binary. Since the systems presented here are based on homogeneous data and have been analysed in the same way, they are suitable for further statistical analysis.
- ID:
- ivo://CDS.VizieR/J/A+AS/136/81
- Title:
- A ROSAT PSPC X-Ray Survey of the SMC
- Short Name:
- J/A+AS/136/81
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a systematic search for point-like and moderately extended soft (0.1-2.4keV) X-ray sources in a raster of nine pointings covering a field of 8.95deg^2^ and performed with the ROSAT PSPC between October 1991 and October 1993 in the direction of the Small Magellanic Cloud (SMC). We detect 248 objects which we include in the first version of our SMC catalogue of soft X-ray sources. We set up seven source classes defined by selections in the count rate, hardness ratio and source extent. We find five high luminosity super-soft sources (1E 0035.4-7230, 1E 0056.8-7146, RX J0048.4-7332, RX J0058.6-7146 and RX J0103-7254), one low-luminosity super-soft source RX J0059.6-7138 correlating with the planetary nebula L357, 51 candidate hard X-ray binaries including eight bright hard X-ray binary candidates, 19 supernova remnants (SNRs), 19 candidate foreground stars and 53 candidate background active galactic nuclei (and quasars). We give a likely classification for ~60% of the catalogued sources. The total count rate of the detected point-like and moderately extended sources in our catalogue is 6.9+/-0.3s^-1, comparable to the background subtracted total rate from the integrated field of ~6.1+/-0.1s^-1.
- ID:
- ivo://CDS.VizieR/J/PASJ/55/161
- Title:
- ASCA sources in the SMC
- Short Name:
- J/PASJ/55/161
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We made 22 observations on the Small Magellanic Cloud (SMC) and covered full regions of the main body and the eastern wing by the end of the ASCA mission. We detected 106 discrete sources with a criterion of S/N>5 and performed systematic analyses on all of the sources. We determined the source positions with an ~40" error radius (90% confidence) for sources detected in the central 20' radius of the GIS. We detected coherent pulsations from 17 sources. Among them, eight were newly discovered during this study. We classified most of these pulsars as X-ray binary pulsars (XBPs) based on their properties, such as the flux variability and the existence of an optical counterpart. We detected X-ray emission from eight supernova remnants (SNRs). Based on these ASCA results and further information from ROSAT, SAX, RXTE, CGRO, Chandra, and XMM-Newton, we compiled comprehensive catalogues of discrete X-ray sources in the Small Magellanic Cloud.
- ID:
- ivo://CDS.VizieR/J/ApJ/747/L19
- Title:
- A search for SNR 0519-69.0 progenitors
- Short Name:
- J/ApJ/747/L19
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a search for an ex-companion star in SNR 0519-69.0, located in the Large Magellanic Cloud, based on images taken with the Hubble Space Telescope with a limiting magnitude of V=26.05. SNR 0519-69.0 is confidently known to be from a Type Ia supernova based on its light echoes and X-ray spectra. The geometric center of the remnant (based on the H{alpha} and X-ray shell) is at 05:19:34.83, -69:02:06.92 (J2000). Accounting for the measurement uncertainties, the orbital velocity, and the kick velocity, any ex-companion star must be within 4.7" of this position at the 99.73% confidence level. This circle contains 27 main-sequence stars brighter than V=22.7, any one of which could be the ex-companion star left over from a supersoft source progenitor system. The circle contains no post-main-sequence stars, and this rules out the possibility of all other published single-degenerate progenitor classes (including symbiotic stars, recurrent novae, helium donors, and the spin-up/spin-down models) for this particular supernova. The only remaining possibility is that SNR 0519-69.0 was formed from either a supersoft source or a double-degenerate progenitor system.
- ID:
- ivo://CDS.VizieR/J/MNRAS/506/3540
- Title:
- ASKAP-EMU ESP LMC Radio Continuum Survey
- Short Name:
- J/MNRAS/506/3540
- Date:
- 17 Jan 2022 11:54:41
- Publisher:
- CDS
- Description:
- We present an analysis of a new 120 deg^2^ radio continuum image of the Large Magellanic Cloud (LMC) at 888MHz with a bandwidth of 288MHz and beam size of 13.9"x12.1", from the Australian Square Kilometre Array Pathfinder (ASKAP) processed as part of the Evolutionary Map of the Universe (EMU) survey. The median Root Mean Squared noise is 58uJy/beam. We present a catalogue of 54612 sources, divided over a Gold list (30866 sources) complete down to 0.5mJy uniformly across the field, a Silver list (22080 sources) reaching down to <0.2mJy and a Bronze list (1666 sources) of visually inspected sources in areas of high noise and/or near bright complex emission. We discuss detections of planetary nebulae and their radio luminosity function, young stellar objects showing a correlation between radio luminosity and gas temperature, novae and X-ray binaries in the LMC, and active stars in the Galactic foreground that may become a significant population below this flux level. We present examples of diffuse emission in the LMC (HII regions, supernova remnants, bubbles) and distant galaxies showcasing spectacular interaction between jets and intracluster medium. Among 14333 infrared counterparts of the predominantly background radio source population we find that star-forming galaxies become more prominent below 3mJy compared to active galactic nuclei.We combine the new 888MHz data with archival Australia Telescope Compact Array data at 1.4GHz to determine spectral indices; the vast majority display synchrotron emission but flatter spectra occur too. We argue that the most extreme spectral index values are due to variability.
- ID:
- ivo://CDS.VizieR/J/A+A/646/A141
- Title:
- A source catalog for the LMC
- Short Name:
- J/A+A/646/A141
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a clean, magnitude-limited (IRAC1 or WISE1<=15.0mag) multiwavelength source catalog for the Large Magellanic Cloud (LMC). The catalog was built by crossmatching (1'') and deblending (3'') between the source list of Spitzer Enhanced Imaging Products (SEIP) and Gaia Data Release 2 (DR2), with strict constraints on the Gaia astrometric solution in order to remove the foreground contamination. It is estimated that about 99.5% of the targets in our catalog are most likely genuine members of the LMC. The catalog contains 197004 targets in 52 different bands, including two ultraviolet, 21 optical, and 29 infrared bands. Additional information about radial velocities and spectral and photometric classifications were collected from the literature. We compare our sample with the sample from Gaia DR2 (2018A&A...616A...1G, Cat. I/345), indicating that the bright end of our sample is mostly comprised of blue helium-burning stars (BHeBs) and red HeBs with inevitable contamination of main sequence stars at the blue end. After applying modified magnitude and color cuts based on previous studies, we identified and ranked 2974 red supergiant, 508 yellow supergiant, and 4786 blue supergiant candidates in the LMC in six color-magnitude diagrams (CMDs). The comparison between the CMDs from the two catalogs of the LMC and Small Magellanic Cloud (SMC) indicates that the most distinct difference appears at the bright red end of the optical and near-infrared CMDs, where the cool evolved stars (e.g., red supergiant stars (RSGs), asymptotic giant branch stars, and red giant stars) are located, which is likely due to the effect of metallicity and star formation history. A further quantitative comparison of colors of massive star candidates in equal absolute magnitude bins suggests that there is essentially no difference for the BSG candidates, but a large discrepancy for the RSG candidates since LMC targets are redder than the SMC ones, which may be due to the combined effect of metallicity on both spectral type and mass-loss rate as well as the age effect. The effective temperatures (Teff) of massive star populations are also derived from reddening-free color of (J-K_S_0. The Teff ranges are 3500<Teff<5000K for an RSG population, 5000<Teff<8000K for a YSG population, and Teff>8000K for a BSG population, with larger uncertainties toward the hotter stars.
- ID:
- ivo://CDS.VizieR/J/A+A/629/A91
- Title:
- A source catalog for the SMC
- Short Name:
- J/A+A/629/A91
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a clean, magnitude-limited (IRAC1 or WISE1 <=15.0mag) multiwavelength source catalog for the Small Magellanic Cloud (SMC) with 45466 targets in total, with the purpose of building an anchor for future studies, especially for the massive star populations at low-metallicity. The catalog contains data in 50 different bands including 21 optical and 29 infrared bands, retrieved from SEIP, VMC, IRSF, AKARI, HERITAGE, Gaia, SkyMapper, NSC, Massey (2002, Cat. II/236), and GALEX, ranging from the ultraviolet to the far-infrared. Additionally, radial velocities and spectral classifications were collected from the literature, and infrared and optical variability statistics were retrieved from WISE, SAGE-Var, VMC, IRSF, Gaia, NSC, and OGLE. The catalog was essentially built upon a 1" crossmatching and a 3" deblending between the Spitzer Enhanced Imaging Products (SEIP) source list and Gaia Data Release 2 (DR2) photometric data. Further constraints on the proper motions and parallaxes from Gaia DR2 allowed us to remove the foreground contamination. We estimate that about 99.5% of the targets in our catalog are most likely genuine members of the SMC. Using the evolutionary tracks and synthetic photometry from MESA Isochrones & Stellar Tracks and the theoretical J-K_S_ color cuts, we identified 1405 red supergiant (RSG), 217 yellow supergiant, and 1,369 blue supergiant candidates in the SMC in five different color-magnitude diagrams (CMDs), where attention should also be paid to the incompleteness of our sample. We ranked the candidates based on the intersection of different CMDs. A comparison between the models and observational data shows that the lower limit of initial mass for the RSG population may be as low as 7 or even 6M_{sun}_ and that the RSG is well separated from the asymptotic giant branch (AGB) population even at faint magnitude, making RSGs a unique population connecting the evolved massive and intermediate stars, since stars with initial mass around 6 to 8$M_{sun}_ are thought to go through a second dredge-up to become AGB stars. We encourage the interested reader to further exploit the potential of our catalog.