- ID:
- ivo://CDS.VizieR/J/ApJ/751/122
- Title:
- Ages and masses for 920 LMC clusters
- Short Name:
- J/ApJ/751/122
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new age and mass estimates for 920 stellar clusters in the Large Magellanic Cloud (LMC) based on previously published broadband photometry and the stellar cluster analysis package, MASSCLEANage. Expressed in the generic fitting formula, d^2^N/dMdt{prop.to}M^{alpha}^t^{beta}^, the distribution of observed clusters is described by {alpha}=-1.5 to -1.6 and {beta}=-2.1 to -2.2. For 288 of these clusters, ages have recently been determined based on stellar photometric color-magnitude diagrams, allowing us to gauge the confidence of our ages. The results look very promising, opening up the possibility that this sample of 920 clusters, with reliable and consistent age, mass, and photometric measures, might be used to constrain important characteristics about the stellar cluster population in the LMC. We also investigate a traditional age determination method that uses a {chi}^2^ minimization routine to fit observed cluster colors to standard infinite-mass limit simple stellar population models. This reveals serious defects in the derived cluster age distribution using this method. The traditional {chi}^2^ minimization method, due to the variation of U, B, V, R colors, will always produce an overdensity of younger and older clusters, with an underdensity of clusters in the log(age/yr)=[7.0,7.5] range. Finally, we present a unique simulation aimed at illustrating and constraining the fading limit in observed cluster distributions that includes the complex effects of stochastic variations in the observed properties of stellar clusters.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/436/136
- Title:
- Ages and masses of LMC clusters
- Short Name:
- J/MNRAS/436/136
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Whether or not the rich star cluster population in the Large Magellanic Cloud (LMC) is affected by significant disruption during the first few x10^8^yr of its evolution is an open question and the subject of significant current debate. Here, we revisit the problem, adopting a homogeneous data set of broad-band imaging observations. We base our analysis mainly on two sets of self-consistently determined LMC cluster ages and masses, one using standard modelling and one which takes into account the effects of stochasticity in the clusters' stellar mass functions. On their own, the results based on any of the three complementary analysis approaches applied here are merely indicative of the physical conditions governing the cluster population. However, the combination of our results from all three different diagnostics leaves little room for any conclusion other than that the optically selected LMC star cluster population exhibits no compelling evidence of significant disruption - for clusters with masses, M_cl_, of log(M_cl_/M_{sun}_)>~3.0-3.5 - between the age ranges of [3-10 and 30-100]Myr, either 'infant mortality' or otherwise. In fact, there is no evidence of any destruction beyond that expected from simple models just including stellar dynamics and stellar evolution for ages up to 1Gyr. It seems, therefore, that the difference in environmental conditions in the Magellanic Clouds on the one hand and significantly more massive galaxies on the other may be the key to understanding the apparent variations in cluster disruption behaviour at early times.
- ID:
- ivo://CDS.VizieR/J/A+A/517/A50
- Title:
- Ages & luminosities of young SMC/LMC star clusters
- Short Name:
- J/A+A/517/A50
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper we discuss the age and spatial distribution of young (age<1Gyr) SMC and LMC clusters using data from the Magellanic Cloud Photometric Surveys. Luminosities are calculated for all age-dated clusters. Ages of 324 and 1193 populous star clusters in the Small and the Large Magellanic Cloud have been determined fitting Padova and Geneva isochrone models to their resolved color-magnitude diagrams. The clusters cover an age range between 10Myr and 1Gyr in each galaxy. For the SMC a constant distance modulus of (m-M)_0_=18.90 and a metallicity of Z=0.004 were adopted. For the LMC, we used a constant distance modulus of (m-M)_0_=18.50 and a metallicity of Z=0.008. For both galaxies, we used a variable color excess to derive the cluster ages. We find two periods of enhanced cluster formation in both galaxies at 160Myr and 630Myr (SMC) and at 125Myr and 800Myr (LMC). We present the spatially resolved recent star formation history of both Clouds based on young star clusters. The first peak may have been triggered by a close encounter between the SMC and the LMC. In both galaxies the youngest clusters reside in the supergiant shells, giant shells, the inter-shell regions, and toward regions with a high H\alpha content, suggesting that their formation is related to expansion and shell-shell interaction. Most of the clusters are older than the dynamical age of the supergiant shells. No evidence for cluster dissolution was found. Computed V band luminosities show a trend for fainter magnitudes with increasing age as well as a trend for brighter magnitudes with increasing apparent cluster radii.
- ID:
- ivo://CDS.VizieR/J/A+A/452/179
- Title:
- Ages of SMC young clusters and field stars
- Short Name:
- J/A+A/452/179
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper we discuss the cluster and field star formation in the central part of the Small Magellanic Cloud. The main goal is to study the correlation between young objects and their interstellar environment. The ages of about 164 associations and 311 clusters younger than 1Gyr are determined using isochrone fitting. The spatial distribution of the clusters is compared with the HI maps, with the HI velocity dispersion field, with the location of the CO clouds and with the distribution of young field stars.
- ID:
- ivo://CDS.VizieR/J/ApJ/853/104
- Title:
- Ages of star clusters in SMC
- Short Name:
- J/ApJ/853/104
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new study of the spatial distribution and ages of the star clusters in the Small Magellanic Cloud (SMC). To detect and estimate the ages of the star clusters we rely on the new fully automated method developed by Bitsakis+ (2017, J/ApJ/845/56). Our code detects 1319 star clusters in the central 18deg^2^ of the SMC we surveyed (1108 of which have never been reported before). The age distribution of those clusters suggests enhanced cluster formation around 240Myr ago. It also implies significant differences in the cluster distribution of the bar with respect to the rest of the galaxy, with the younger clusters being predominantly located in the bar. Having used the same setup, and data from the same surveys as for our previous study of the LMC, we are able to robustly compare the cluster properties between the two galaxies. Our results suggest that the bulk of the clusters in both galaxies were formed approximately 300Myr ago, probably during a direct collision between the two galaxies. On the other hand, the locations of the young (<=50Myr) clusters in both Magellanic Clouds, found where their bars join the HI arms, suggest that cluster formation in those regions is a result of internal dynamical processes. Finally, we discuss the potential causes of the apparent outside-in quenching of cluster formation that we observe in the SMC. Our findings are consistent with an evolutionary scheme where the interactions between the Magellanic Clouds constitute the major mechanism driving their overall evolution.
- ID:
- ivo://CDS.VizieR/J/ApJ/748/107
- Title:
- A global model for MC and Galactic Cepheids
- Short Name:
- J/ApJ/748/107
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We perform a global fit to ~5000 radial velocity and ~177000 magnitude measurements in 29 photometric bands covering 0.3{mu}m to 8.0{mu}m distributed among 287 Galactic, Large Magellanic Cloud, and Small Magellanic Cloud Cepheids with P>10 days. We assume that the Cepheid light curves and radial velocities are fully characterized by distance, reddening, and time-dependent radius and temperature variations. We construct phase curves of radius and temperature for periods between 10 and 100 days, which yield light-curve templates for all our photometric bands and can be easily generalized to any additional band. With only four to six parameters per Cepheid, depending on the existence of velocity data and the amount of freedom in the distance, the models have typical rms light and velocity curve residuals of 0.05mag and 3.5km/s. The model derives the mean Cepheid spectral energy distribution and its derivative with respect to temperature, which deviate from a blackbody in agreement with metal-line and molecular opacity effects. We determine a mean reddening law toward the Cepheids in our sample, which is not consistent with standard assumptions in either the optical or near-IR. Based on stellar atmosphere models, we predict the biases in distance, reddening, and temperature determinations due to the metallicity and quantify the metallicity signature expected for our fit residuals.
- ID:
- ivo://CDS.VizieR/J/ApJ/701/508
- Title:
- 5000 AGNs behind the Magellanic clouds
- Short Name:
- J/ApJ/701/508
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We show that using mid-IR color selection to find active galactic nuclei (AGNs) is as effective in dense stellar fields such as the Magellanic Clouds as it is in extragalactic fields with low stellar densities using comparisons between the Spitzer Deep Wide Field Survey data for the NOAO Deep Wide Field Survey Bootes region and the SAGE Survey of the Large Magellanic Cloud. We use this to build high-purity catalogs of ~5000 AGN candidates behind the Magellanic Clouds. Once confirmed, these quasars will expand the available astrometric reference sources for the Clouds and the numbers of quasars with densely sampled, long-term (>decade) monitoring light curves by well over an order of magnitude and potentially identify sufficiently bright quasars for absorption line studies of the interstellar medium of the Clouds.
- ID:
- ivo://CDS.VizieR/J/AJ/145/32
- Title:
- AKARI-LMC Near-infrared Spectroscopic Catalog
- Short Name:
- J/AJ/145/32
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We performed a near-infrared spectroscopic survey toward an area of ~10deg^2^ of the Large Magellanic Cloud (LMC) with the infrared satellite AKARI. Observations were carried out as part of the AKARI Large-area Survey of the Large Magellanic Cloud (LSLMC). The slitless multi-object spectroscopic capability of the AKARI/IRC enabled us to obtain low-resolution (R~20) spectra in 2-5{mu}m for a large number of point sources in the LMC. As a result of the survey, we extracted about 2000 infrared spectra of point sources. The data are organized as a near-infrared spectroscopic catalog. The catalog includes various infrared objects such as young stellar objects (YSOs), asymptotic giant branch (AGB) stars, supergiants, and so on. It is shown that 97% of the catalog sources have corresponding photometric data in the wavelength range from 1.2 to 11{mu}m, and 67% of the sources also have photometric data up to 24{mu}m. The catalog allows us to investigate near-infrared spectral features of sources by comparison with their infrared spectral energy distributions. In addition, it is estimated that about 10% of the catalog sources are observed at more than two different epochs. This enables us to study a spectroscopic variability of sources by using the present catalog. Initial results of source classifications for the LSLMC samples are presented. We classified 659 LSLMC spectra based on their near-infrared spectral features by visual inspection. As a result, it is shown that the present catalog includes 7 YSOs, 160 C-rich AGBs, 8 C-rich AGB candidates, 85 O-rich AGBs, 122 blue and yellow supergiants, 150 red super giants, and 128 unclassified sources. Distributions of the classified sources on the color-color and color-magnitude diagrams are discussed in the text. Continuous wavelength coverage and high spectroscopic sensitivity in 2-5{mu}m can only be achieved by space observations. This is an unprecedented large-scale spectroscopic survey toward the LMC in the near-infrared. A large number of near-infrared spectral data provided by the survey possess scientific potential that can be applied to various studies. In this paper, we present the details of the spectroscopic survey and the catalog, and discuss its scientific applications.
- ID:
- ivo://CDS.VizieR/J/AJ/144/179
- Title:
- AKARI-LMC Point-source catalog
- Short Name:
- J/AJ/144/179
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a near- to mid-infrared point-source catalog of five photometric bands at 3.2, 7, 11, 15, and 24{mu}m for a 10deg^2^ area of the Large Magellanic Cloud (LMC) obtained with the Infrared Camera on board the AKARI satellite. To cover the survey area the observations were carried out at three separate seasons from 2006 May to June, 2006 October to December, and 2007 March to July. The 10{sigma} limiting magnitudes of the present survey are 17.9, 13.8, 12.4, 9.9, and 8.6mag at 3.2, 7, 11, 15, and 24{mu}m, respectively. The photometric accuracy is estimated to be about 0.1mag at 3.2{mu}m and 0.06-0.07 mag in the other bands. The position accuracy is 0.3" at 3.2, 7, and 11{mu}m and 1.0" at 15 and 24{mu}m. The sensitivities at 3.2, 7, and 24{mu}m are roughly comparable to those of the Spitzer SAGE LMC point-source catalog, while the AKARI catalog provides the data at 11 and 15 {mu}m, covering the mid-infrared spectral range contiguously. Two types of catalog are provided: a Catalog and an Archive. The Archive contains all the detected sources, while the Catalog only includes the sources that have a counterpart in the Spitzer SAGE point-source catalog. The Archive contains about 650,000, 140,000, 97,000, 43,000, and 52,000 sources at 3.2, 7, 11, 15, and 24{mu}m, respectively. Based on the catalog, we discuss the luminosity functions at each band, the color-color diagram, and the color-magnitude diagram using the 3.2, 7, and 11{mu}m band data. Stars without circumstellar envelopes, dusty C-rich and O-rich stars, young stellar objects, and background galaxies are located at distinct regions in the diagrams, suggesting that the present catalog is useful for the classification of objects toward the LMC.
- ID:
- ivo://CDS.VizieR/J/MNRAS/420/585
- Title:
- AKARI observations of SMC Cepheids
- Short Name:
- J/MNRAS/420/585
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this work we matched the AKARI archival data to the Optical Gravitational Lensing Experiment III (OGLE-III) catalogue to derive the mid-infrared period-luminosity (PL) relations for Small Magellanic Cloud (SMC) Cepheids. Mismatched AKARI sources were eliminated using random-phase colours obtained from the full I-band light curves from OGLE-III. It was possible to derive PL relations in the N3 and N4 bands only, although the S7-, S11-, L15- and L24-band data were also tested. Random-phase correction was included when deriving the PL relation in the N3 and N4 bands using the available time of observations from AKARI data. The final adopted PL relations were N3=-3.370logP+16.527 and N4=-3.402logP+16.556. However, these PL relations may be biased due to the small number of Cepheids in the sample.