- ID:
- ivo://CDS.VizieR/J/ApJ/816/49
- Title:
- Spitzer/IRAC observations of SMC Cepheids
- Short Name:
- J/ApJ/816/49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using Spitzer observations of classical Cepheids we have measured the true average distance modulus of the Small Magellanic Cloud (SMC) to be 18.96+/-0.01_stat_+/-0.03_sys_mag (corresponding to 62+/-0.3kpc), which is 0.48+/-0.01mag more distant than the LMC. This is in agreement with previous results from Cepheid observations, as well as with measurements from other indicators such as RR Lyrae stars and the tip of the red giant branch. Utilizing the properties of the mid-infrared Leavitt Law we measured precise distances to individual Cepheids in the SMC, and have confirmed that the galaxy is tilted and elongated such that its eastern side is up to 20kpc closer than its western side. This is in agreement with the results from red clump stars and dynamical simulations of the Magellanic Clouds and Stream.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/626/A92
- Title:
- Spitzer/IRS analysis of the 30-micron sources
- Short Name:
- J/A+A/626/A92
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an analysis and comparison of the 30{mu}m dust features seen in the Spitzer Space Telescope spectra of 207 carbon-rich asymptotic giant branch (AGB) stars, post-AGB objects, and planetary nebulae (PNe) located in the Milky Way, the Magellanic Clouds (MCs), or the Sagittarius dwarf spheroidal galaxy (Sgr dSph), which are characterised by different average metallicities. We investigated whether the formation of the 30{mu}m feature carrier may be a function of the metallicity. Through this study we expect to better understand the late stages of stellar evolution of carbon-rich stars in these galaxies. Our analysis uses the "Manchester method" as a basis for estimating the temperature of dust for the carbon-rich AGB stars and the PNe in our sample. For post-AGB objects we changed the wavelength ranges used for temperature estimation, because of the presence of the 21{mu}m feature on the short wavelength edge of the 30{mu}m feature. We used a black-body function with a single temperature deduced from the Manchester method or its modification to approximate the continuum under the 30{mu}m feature. We find that the strength of the 30{mu}m feature increases until dust temperature drops below 400K. Below this temperature, the large loss of mass and probably the self-absorption effect reduces the strength of the feature. During the post-AGB phase, when the intense mass-loss has terminated, the optical depth of the circumstellar envelope is smaller, and the 30{um}m feature becomes visible again, showing variety of values for post-AGB objects and PNe, and being comparable with the strengths of AGB stars. In addition, the AGB stars and post-AGB objects show similar values of central wavelengths - usually between 28.5 and 29.5{mu}m. However, in case of PNe the shift of the central wavelength towards longer wavelengths is visible. The normalised median profiles for AGB stars look uniformly for various ranges of dust temperature, and different galaxies. We analysed the profiles of post-AGB objects and PNe only within one dust temperature range (below 200K), and they were also similar in different galaxies. In the spectra of 17 PNe and five post-AGB objects we found the broad 16-24{mu}m feature. Two objects among the PNe group are the new detections: SMP LMC 51, and SMP LMC 79, whereas in the case of post-AGBs the new detections are: IRAS 05370-7019, IRAS 05537-7015, and IRAS 21546+4721. In addition, in the spectra of nine PNe we found the new detections of 16-18{mu}m feature. We also find that the Galactic post-AGB object IRAS 11339-6004 has a 21{mu}m emission. Finally, we have produced online catalogues of photometric data and Spitzer IRS spectra for all objects that show the 30{mu}m feature. These resources are available online for use by the community. The most important conclusion of our work is the fact that the formation of the 30{mu}m feature is affected by metallicity. Specifically that, as opposed to more metal-poor samples of AGB stars in the MCs, the feature is seen at lower mass-loss rates, higher temperatures, and has seen to be more prominent in Galactic carbon stars. The averaged feature (profile) in the AGB, post-AGB objects, and PNe seems unaffected by metallicity at least between a fifth and solar metallicity, but in the case of PNe it is shifted to significantly longer wavelengths.
- ID:
- ivo://CDS.VizieR/J/ApJ/826/44
- Title:
- Spitzer/IRS obs. of Magellanic carbon stars
- Short Name:
- J/ApJ/826/44
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Infrared Spectrograph on the Spitzer Space Telescope observed 184 carbon stars in the Magellanic Clouds. This sample reveals that the dust-production rate (DPR) from carbon stars generally increases with the pulsation period of the star. The composition of the dust grains follows two condensation sequences, with more SiC condensing before amorphous carbon in metal-rich stars, and the order reversed in metal-poor stars. MgS dust condenses in optically thicker dust shells, and its condensation is delayed in more metal-poor stars. Metal-poor carbon stars also tend to have stronger absorption from C_2_H_2_ at 7.5{mu}m. The relation between DPR and pulsation period shows significant apparent scatter, which results from the initial mass of the star, with more massive stars occupying a sequence parallel to lower-mass stars, but shifted to longer periods. Accounting for differences in the mass distribution between the carbon stars observed in the Small and Large Magellanic Clouds reveals a hint of a subtle decrease in the DPR at lower metallicities, but it is not statistically significant. The most deeply embedded carbon stars have lower variability amplitudes and show SiC in absorption. In some cases they have bluer colors at shorter wavelengths, suggesting that the central star is becoming visible. These deeply embedded stars may be evolving off of the asymptotic giant branch and/or they may have non-spherical dust geometries.
- ID:
- ivo://CDS.VizieR/J/ApJ/743/76
- Title:
- Spitzer photometry of LMC Cepheids
- Short Name:
- J/ApJ/743/76
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Carnegie Hubble Program is designed to improve the extragalactic distance scale using data from the post-cryogenic era of Spitzer. The ultimate goal is a determination of the Hubble constant to an accuracy of 2%. This paper is the first in a series on the Cepheid population of the Large Magellanic Cloud, and focusses on the period-luminosity (PL) relations (Leavitt laws) that will be used, in conjunction with observations of Milky Way Cepheids, to set the slope and zero point of the Cepheid distance scale in the mid-infrared. To this end, we have obtained uniformly sampled light curves for 85 LMC Cepheids, having periods between 6 and 140 days. PL and period-color relations are presented in the 3.6um and 4.5um bands. We demonstrate that the 3.6um band is a superb distance indicator. The cyclical variation of the [3.6]-[4.5] color has been measured for the first time. We attribute the amplitude and phase of the color curves to the dissociation and recombination of CO molecules in the Cepheid's atmosphere. The CO affects only the 4.5um flux making it a potential metallicity indicator.
- ID:
- ivo://CDS.VizieR/J/AJ/135/726
- Title:
- Spitzer SAGE observations of LMC PNe
- Short Name:
- J/AJ/135/726
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present IRAC and MIPS images and photometry of a sample of previously known planetary nebulae (PNe) from the Surveying the Agents of a Galaxy's Evolution (SAGE) survey of the Large Magellanic Cloud (LMC) performed with the Spitzer Space Telescope. Of the 233 known PNe in the survey field, 185 objects were detected in at least two of the IRAC bands, and 161 detected in the MIPS 24um images. Color-color and color-magnitude diagrams are presented using several combinations of IRAC, MIPS, and Two Micron All Sky Survey magnitudes. The location of an individual PN in the color-color diagrams is seen to depend on the relative contributions of the spectral components which include molecular hydrogen, polycyclic aromatic hydrocarbons (PAHs), infrared forbidden line emission from the ionized gas, warm dust continuum, and emission directly from the central star. The sample of LMC PNe is compared to a number of Galactic PNe and found not to significantly differ in their position in color-color space. We also explore the potential value of IR PNe luminosity functions (LFs) in the LMC. IRAC LFs appear to follow the same functional form as the well-established [OIII] LFs although there are several PNe with observed IR magnitudes brighter than the cut-offs in these LFs.
- ID:
- ivo://CDS.VizieR/J/ApJ/845/56
- Title:
- Star clusters automatically detected in the LMC
- Short Name:
- J/ApJ/845/56
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present our new, fully automated method to detect and measure the ages of star clusters in nearby galaxies, where individual stars can be resolved. The method relies purely on statistical analysis of observations and Monte-Carlo simulations to define stellar overdensities in the data. It decontaminates the cluster color-magnitude diagrams and, using a revised version of the Bayesian isochrone fitting code of Ramirez-Siordia+ (2017, in prep.), estimates the ages of the clusters. Comparisons of our estimates with those from other surveys show the superiority of our method to extract and measure the ages of star clusters, even in the most crowded fields. An application of our method is shown for the high-resolution, multiband imaging of the Large Magellanic Cloud. We detect 4850 clusters in the 7deg^2^ we surveyed, 3451 of which have not been reported before. Our findings suggest multiple epochs of star cluster formation, with the most probable occurring ~310Myr ago. Several of these events are consistent with the epochs of the interactions among the Large and Small Magellanic Clouds, and the Galaxy, as predicted by N-body numerical simulations. Finally, the spatially resolved star cluster formation history may suggest an inside-out cluster formation scenario throughout the LMC, for the past 1Gyr.
- ID:
- ivo://CDS.VizieR/J/MNRAS/463/1446
- Title:
- Star clusters in Magellanic Clouds
- Short Name:
- J/MNRAS/463/1446
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have introduced a semi-automated quantitative method to estimate the age and reddening of 1072 star clusters in the Large Magellanic Cloud (LMC) using the Optical Gravitational Lensing Experiment (OGLE) III survey data. This study brings out 308 newly parameterised clusters. In a first of its kind, the LMC clusters are classified into groups based on richness/mass as very poor, poor, moderate and rich clusters, similar to the classification scheme of open clusters in the Galaxy. A major cluster formation episode is found to happen at 125+/-25Myr in the inner LMC. The bar region of the LMC appears prominently in the age range 60-250Myr and is found to have a relatively higher concentration of poor and moderate clusters. The eastern and the western ends of the bar are found to form clusters initially, which later propagates to the central part. We demonstrate that there is a significant difference in the distribution of clusters as a function of mass, using a movie based on the propagation (in space and time) of cluster formation in various groups. The importance of including the low mass clusters in the cluster formation history is demonstrated. The catalog with parameters, classification, and cleaned and isochrone fitted CMDs of 1072 clusters, which are available as online material, can be further used to understand the hierarchical formation of clusters in selected regions of the LMC.
- ID:
- ivo://CDS.VizieR/J/A+A/602/A89
- Title:
- Star clusters in the Magellanic Clouds
- Short Name:
- J/A+A/602/A89
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- To produce an homogeneous catalog of astrophysical parameters of 239 resolved star clusters located in the Small and Large Magellanic Clouds, observed in the Washington photometric system. The cluster sample was processed with the recently introduced Automated Stellar Cluster Analysis (ASteCA) package, which ensures both an automatized and a fully reproducible treatment, together with a statistically based analysis of their fundamental parameters and associated uncertainties. The fundamental parameters determined with this tool for each cluster, via a color-magnitude diagram (CMD) analysis, are: metallicity, age, reddening, distance modulus, and total mass. We generated an homogeneous catalog of structural and fundamental parameters for the studied cluster sample, and performed a detailed internal error analysis along with a thorough comparison with values taken from twenty-six published articles. We studied the distribution of cluster fundamental parameters in both Clouds, and obtained their age-metallicity relationships. The ASteCA package can be applied to an unsupervised determination of fundamental cluster parameters; a task of increasing relevance as more data becomes available through upcoming surveys.
- ID:
- ivo://CDS.VizieR/J/ApJS/161/304
- Title:
- Star clusters in the Milky Way and satellites
- Short Name:
- J/ApJS/161/304
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a database of structural and dynamical properties for 153 spatially resolved star clusters in the Milky Way, the Large and Small Magellanic Clouds, and the Fornax dwarf spheroidal. This database complements and extends others in the literature, such as those of Harris (Cat. <VII/202>) and Mackey & Gilmore (2003MNRAS.338...85M, 2003MNRAS.338..120M, 2003MNRAS.340..175M). Our cluster sample comprises 50 "young massive clusters" in the LMC and SMC, and 103 old globular clusters between the four galaxies. The parameters we list include central and half-light-averaged surface brightnesses and mass densities; core and effective radii; central potentials, concentration parameters, and tidal radii; predicted central velocity dispersions and escape velocities; total luminosities, masses, and binding energies; central phase-space densities; half-mass relaxation times; and "{kappa}-space" parameters.
- ID:
- ivo://CDS.VizieR/J/AJ/127/1531
- Title:
- Star formation history of SMC
- Short Name:
- J/AJ/127/1531
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the spatially resolved star formation and chemical enrichment history of the Small Magellanic Cloud (SMC) across the entire central 4{deg}x4.5{deg} area of the main body, based on UBVI photometry from our Magellanic Clouds Photometric Survey.