- ID:
- ivo://CDS.VizieR/J/A+A/476/217
- Title:
- Fundamental parameters of five old open clusters
- Short Name:
- J/A+A/476/217
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The outer parts of the Milky Way disk are believed to be one of the main arenas where the accretion of external material in the form of dwarf galaxies and subsequent formation of streams is taking place. The Monoceros stream and the Canis Major and Argo over-densities are notorious examples. Understanding whether what we detect is the signature of accretion or, more conservatively, simply the intrinsic nature of the disk, represents one of the major goals of modern Galactic astronomy. We try to shed more light on the properties of the outer disk by exploring the properties of distant anti-center old open clusters. We want to verify whether distant clusters follow the chemical and dynamical behavior of the solar vicinity disk, or whether their properties can be better explained in terms of an extra-galactic population.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/155/30
- Title:
- Fundamental parameters of 87 stars from the NPOI
- Short Name:
- J/AJ/155/30
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the fundamental properties of 87 stars based on angular diameter measurements from the Navy Precision Optical Interferometer, 36 of which have not been measured previously using interferometry. Our sample consists of 5 dwarfs, 3 subgiants, 69 giants, 3 bright giants, and 7 supergiants, and span a wide range of spectral classes from B to M. We combined our angular diameters with photometric and distance information from the literature to determine each star's physical radius, effective temperature, bolometric flux, luminosity, mass, and age.
- ID:
- ivo://CDS.VizieR/J/AJ/154/259
- Title:
- Fundamental parameters of Tycho-2 & TGAS stars
- Short Name:
- J/AJ/154/259
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present bolometric fluxes and angular diameters for over 1.6 million stars in the Tycho-2 catalog (I/259), determined using previously determined empirical color-temperature and color-flux relations. We vet these relations via full fits to the full broadband spectral energy distributions for a subset of benchmark stars and perform quality checks against the large set of stars for which spectroscopically determined parameters are available from LAMOST, RAVE, and/or APOGEE. We then estimate radii for the 355502 Tycho-2 stars in our sample whose Gaia DR1 (I/337) parallaxes are precise to ~<10%. For these stars, we achieve effective temperature, bolometric flux, and angular diameter uncertainties of the order of 1%-2% and radius uncertainties of order 8%, and we explore the effect that imposing spectroscopic effective temperature priors has on these uncertainties. These stellar parameters are shown to be reliable for stars with T_eff_~<7000 K. The over half a million bolometric fluxes and angular diameters presented here will serve as an immediate trove of empirical stellar radii with the Gaia second data release, at which point effective temperature uncertainties will dominate the radius uncertainties. Already, dwarf, subgiant, and giant populations are readily identifiable in our purely empirical luminosity-effective temperature (theoretical) Hertzsprung-Russell diagrams.
- ID:
- ivo://CDS.VizieR/J/A+A/573/A67
- Title:
- Fundamental stellar parameters from PolarBase
- Short Name:
- J/A+A/573/A67
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The general context of this study is the inversion of stellar fundamental parameters from high-resolution Echelle spectra. We aim at developing a fast and reliable tool for the post-processing of spectra produced by ESPaDOnS and Narval spectropolarimeters. Our inversion tool relies on principal component analysis. It allows reducing dimensionality and defining a specific metric for the search of nearest neighbours between an observed spectrum and a set of observed spectra taken from the Elodie stellar library. Effective temperature, surface gravity, total metallicity, and projected rotational velocity are derived. Various tests presented in this study that were based solely on information coming from a spectral band centred on the Mgi b-triplet and had spectra from FGK stars are very promising.
- ID:
- ivo://CDS.VizieR/J/ApJ/874/138
- Title:
- Gaia and LAMOST DR4 M giant members of Sgr stream
- Short Name:
- J/ApJ/874/138
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use LAMOST DR4 M giants combined with Gaia DR2 proper motions and ALLWISE photometry to obtain an extremely pure sample of Sagittarius (Sgr) stream stars. Using TiO5 and CaH spectral indices as indicators, we selected a large sample of M-giant stars from M-dwarf stars in LAMOST DR4 spectra. Considering the position, distance, proper motion, and angular momentum distribution, we obtained 164 pure Sgr stream stars. We find that the trailing arm has higher energy than the leading arm in the same angular momentum. The trailing arm we detected extends to a heliocentric distance of ~130kpc at {Lambda}_{sun}_~170{deg}, which is consistent with the feature found in RR Lyrae in Sesar+ (2017, J/ApJ/844/L4). Both of these detections of Sgr, in M-giants and in RR Lyrae, imply that the Sgr stream may contain multiple stellar populations with a broad metallicity range.
- ID:
- ivo://CDS.VizieR/J/A+A/612/A99
- Title:
- Gaia-ESO Survey in 7 open star cluster fields
- Short Name:
- J/A+A/612/A99
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Determination and calibration of the ages of stars, which heavily rely on stellar evolutionary models, are very challenging, while representing a crucial aspect in many astrophysical areas. We describe the methodologies that, taking advantage of Gaia-DR1 and the Gaia-ESO Survey data, enable the comparison of observed open star cluster sequences with stellar evolutionary models. The final, long-term goal is the exploitation of open clusters as age calibrators. We perform a homogeneous analysis of eight open clusters using the Gaia-DR1 TGAS catalogue for bright members and information from the Gaia-ESO Survey for fainter stars. Cluster membership probabilities for the Gaia-ESO Survey targets are derived based on several spectroscopic tracers. The Gaia-ESO Survey also provides the cluster chemical composition. We obtain cluster parallaxes using two methods. The first one relies on the astrometric selection of a sample of bona fide members, while the other one fits the parallax distribution of a larger sample of TGAS sources. Ages and reddening values are recovered through a Bayesian analysis using the 2MASS magnitudes and three sets of standard models. Lithium depletion boundary (LDB) ages are also determined using literature observations and the same models employed for the Bayesian analysis. For all but one cluster, parallaxes derived by us agree with those presented in Gaia Collaboration (2017A&A...601A..19G, Cat. J/A+A/601/A19), while a discrepancy is found for NGC 2516; we provide evidence supporting our own determination. Inferred cluster ages are robust against models and are generally consistent with literature values. The systematic parallax errors inherent in the Gaia DR1 data presently limit the precision of our results. Nevertheless, we have been able to place these eight clusters onto the same age scale for the first time, with good agreement between isochronal and LDB ages where there is overlap. Our approach appears promising and demonstrates the potential of combining Gaia and ground-based spectroscopic datasets.
- ID:
- ivo://CDS.VizieR/J/A+A/564/A133
- Title:
- Gaia FGK benchmark stars: metallicity
- Short Name:
- J/A+A/564/A133
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- To calibrate automatic pipelines that determine atmospheric parameters of stars, one needs a sample of stars, or "benchmark stars", with well-defined parameters to be used as a reference. We provide detailed documentation of the iron abundance determination of the 34 FGK-type benchmark stars that are selected to be the pillars for calibration of the one billion Gaia stars. They cover a wide range of temperatures, surface gravities, and metallicities.
- ID:
- ivo://CDS.VizieR/III/281
- Title:
- Gaia FGK benchmark stars v2.1
- Short Name:
- III/281
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this era of large spectroscopic surveys of stars of the Milky Way, pipelines need to be tested and validated against a set of well-known stars. The Gaia FGK benchmark stars (GBS) are among the preferred samples of reference stars. They consist of a small but carefully selected sample of stars whose parameters are derived consistently and homogeneously. A series of papers has been published that discuss the definition and evolution of the sample of GBS. Here we summarise this work and provide our current list of stars with associated parameters which are recommended for validation and calibration purposes for stellar surveys.
- ID:
- ivo://CDS.VizieR/J/A+A/592/A70
- Title:
- Gaia FGK stars: low-metallicities candidates
- Short Name:
- J/A+A/592/A70
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have entered an era of large spectroscopic surveys in which we can measure, through automated pipelines, the atmospheric parameters and chemical abundances for large numbers of stars. Calibrating these survey pipelines using a set of "benchmark stars" in order to evaluate the accuracy and precision of the provided parameters and abundances is of utmost importance. The recent proposed set of Gaia FGK benchmark stars has up to five metal-poor stars but no recommended stars within -2.0<[Fe/H]<-1.0dex. However, this metallicity regime is critical to calibrate properly. In this paper, we aim to add candidate Gaia benchmark stars inside of this metal-poor gap. We began with a sample of 21 metal-poor stars which was reduced to 10 stars by requiring accurate photometry and parallaxes, and high-resolution archival spectra. The procedure used to determine the stellar parameters was similar to the previous works in this series for consistency. The difference was to homogeneously determine the angular diameter and effective temperature (Teff) of all of our stars using the Infrared Flux Method utilizing multi-band photometry. The surface gravity (logg) was determined through fitting stellar evolutionary tracks. The [Fe/H] was determined using four different spectroscopic methods fixing the Teff and logg from the values determined independent of spectroscopy.
- ID:
- ivo://CDS.VizieR/J/AJ/159/280
- Title:
- Gaia-Kepler stellar properties catalog.I. KIC stars
- Short Name:
- J/AJ/159/280
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- An accurate and precise Kepler Stellar Properties Catalog is essential for the interpretation of the Kepler exoplanet survey results. Previous Kepler Stellar Properties Catalogs have focused on reporting the best-available parameters for each star, but this has required combining data from a variety of heterogeneous sources. We present the Gaia-Kepler Stellar Properties Catalog, a set of stellar properties of 186301 Kepler stars, homogeneously derived from isochrones and broadband photometry, Gaia Data Release 2 parallaxes, and spectroscopic metallicities, where available. Our photometric effective temperatures, derived from g to Ks colors, are calibrated on stars with interferometric angular diameters. Median catalog uncertainties are 112K for Teff, 0.05dex for logg, 4% for R_*_, 7% for M_*_, 13% for {rho}_*_, 10% for L_*_, and 56% for stellar age. These precise constraints on stellar properties for this sample of stars will allow unprecedented investigations into trends in stellar and exoplanet properties as a function of stellar mass and age. In addition, our homogeneous parameter determinations will permit more accurate calculations of planet occurrence and trends with stellar properties.