- ID:
- ivo://CDS.VizieR/J/A+A/580/A121
- Title:
- CaT/[Fe/H] calibration for Galactic bulge stars
- Short Name:
- J/A+A/580/A121
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new calibration of the calcium II triplet equivalent widths versus [Fe/H], constructed upon K giant stars in the Galactic bulge. This calibration will be used to derive iron abundances for the targets of the GIBS survey, and is in general especially well suited for solar and supersolar metallicity giants, which are typical of external massive galaxies. To obtain the calibration, about 150 bulge K giants were observed with the GIRAFFE spectrograph at the VLT with a resolution of R~20000 and at R~6000. In the first case, the spectra allowed us to directly determine the Fe abundances from several unblended Fe lines, deriving what we call here high-resolution [Fe/H] measurements. The low-resolution spectra allowed us to measure equivalent widths of the two strongest lines of the near-infrared calcium II triplet at 8542 and 8662{AA}. By comparing the two measurements, we derived a relation between calcium equivalent widths and [Fe/H] that is linear over the metallicity range probed here, -1<[Fe/H]<+0.7. By adding a small second-order correction based on literature globular cluster data, we derived the unique calibration equation [Fe/H]_CaT_=-3.150+0.432W'+0.006W'^2^, with an rms dispersion of 0.197dex, valid across the whole metallicity range -2.3<[Fe/H]<+0.7.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/126/1362
- Title:
- Century Survey Galactic Halo Project. I.
- Short Name:
- J/AJ/126/1362
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Century Survey Galactic Halo Project is a photometric and spectroscopic survey from which we select relatively blue stars (V-R<0.30mag) as probes of the Milky Way halo. The survey strip spans the range of Galactic latitude 35{deg}<b<88{deg}, allowing us to study the nature of populations of stars and their systematic motions as a function of Galactic latitude. One of our primary goals is to use blue horizontal-branch stars to trace potential star streams in the halo, and to test the hierarchical model for the formation of the Galaxy. In this paper we discuss spectroscopy and multipassband photometry for a sample of 764 blue stars in the Century Survey region. Our sample consists predominantly of A- and F-type stars. We describe our techniques for determination of radial velocities, effective temperatures, metallicities, and surface gravities. Based on these measurements, we derive distance estimates by comparison with a set of calibrated isochrones. We devote special attention to the classification of blue horizontal-branch stars, and compare the results obtained from the application of the techniques of Kinman et al. 1994, Cat. <J/AJ/108/1722>, Wilhelm et al. (1999, Cat. <J/AJ/117/2308>), and Clewley et al. (2002MNRAS.337...87C). We identify 55 blue horizontal-branch stars. Our large sample of stars also uncovers a number of unusual objects, including three carbon-enhanced stars, a late B-type star located 0.8kpc above the Galactic plane, and a DZ white dwarf.
- ID:
- ivo://CDS.VizieR/J/A+A/659/A167
- Title:
- Cepheid Period-Wesenheit-Metallicity relation
- Short Name:
- J/A+A/659/A167
- Date:
- 23 Mar 2022 15:18:20
- Publisher:
- CDS
- Description:
- Classical Cepheids (DCEPs) represent a fundamental tool to calibrate the extragalactic distance scale. However, they are also powerful stellar population tracers, in the context of Galactic studies. The forthcoming Data Release 3 (DR3) of the Gaia mission will allow us to study with unprecedented detail the structure, the dynamics and the chemical properties of the Galactic disc, and in particular of the spiral arms, where most Galactic DCEPs reside. In this paper we aim at quantifying the metallicity dependence of the Galactic DCEPs Period-Wesenheit (PWZ) relation in the Gaia bands. We adopt a sample of 499 DCEPs with metal abundances from high-resolution spectroscopy, in conjunction with Gaia Early Data Release 3 parallaxes and photometry to calibrate a PWZ relation in the Gaia bands. We find a significant metallicity term, of the order of -0.5mag/dex, which is larger than the values measured in the NIR bands by different authors. Our best PWZ relation is W=(-5.988+/-0.018)-(3.176+/-0.044)(logP-1.0)-(0.520+/-0.090)[Fe/H]. We validate our PWZ relations by using the distance to the Large Magellanic Cloud as a benchmark, finding a very good agreement with the geometric distance provided by eclipsing binaries. As an additional test, we evaluate the metallicity gradient of the young Galactic disc, finding -0.0527+/-0.0022dex/kpc, in very good agreement with previous results.
- ID:
- ivo://CDS.VizieR/J/MNRAS/434/2238
- Title:
- Cepheids in open clusters
- Short Name:
- J/MNRAS/434/2238
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Cepheids in open clusters (cluster Cepheids: CCs) are of great importance as zero-point calibrators of the Galactic Cepheid period-luminosity relationship (PLR). We perform an 8-dimensional all-sky census that aims to identify new bona-fide CCs and provide a ranking of membership confidence for known CC candidates according to membership probabilities. The probabilities are computed for combinations of known Galactic open clusters and classical Cepheid candidates, based on spatial, kinematic, and population-specific membership constraints. Data employed in this analysis are taken largely from published literature and supplemented by a year-round observing program on both hemispheres dedicated to determining systemic radial velocities of Cepheids. In total, we find 23 bona-fide CCs, 5 of which are candidates identified for the first time, including an overtone-Cepheid member in NGC 129. We discuss a subset of CC candidates in detail, some of which have been previously mentioned in the literature. Our results indicate unlikely membership for 7 Cepheids that have been previously discussed in terms of cluster membership. We furthermore revisit the Galactic PLR using our bona fide CC sample and obtain a result consistent with the recent calibration by Turner (2010). However, our calibration remains limited mainly by cluster uncertainties and the small number of long-period calibrators. In the near future, Gaia will enable our study to be carried out in much greater detail and accuracy, thanks to data homogeneity and greater levels of completeness.
- ID:
- ivo://CDS.VizieR/J/A+A/618/A122
- Title:
- Cetus dSph stellar chemo-kinematics
- Short Name:
- J/A+A/618/A122
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Cetus is an isolated, dwarf spheroidal (dSph) galaxy at a distance of 755kpc. In order to quantify its stellar chemo-kinematical properties, we observed individual red giants branch stars in Cetus with the Very Large Telescope (VLT) FORS2 instrument, in Mask eXchange Unit (MXU) configuration. The kinematic analysis shows that Cetus is a mainly pressure-supported ({sigma}_v_=11.0^+1.6^_-1.3_km/s), dark-matter-dominated system (M_1/2_/L_V_=23.9^+9.7^_-8.9_M_{sun}_/L_{sun}_) with no significant signs of internal rotation. We find Cetus to be a metal-poor system with a significant metallicity spread (median [Fe/H]=-1.71dex, median-absolute-deviation =0.49dex), as expected for its stellar mass. We report the presence of a mild metallicity gradient compatible with those found in other dSphs of the same luminosity; we trace the presence of a stellar population gradient also in the spatial distribution of stars in different evolutionary phases in ancillary photometric data. There are tentative indications of two chemo-kinematically distinct sub-populations, with the more metal-poor stars showing a hotter kinematics than the metal-richer ones. Our results add Cetus to the growing scatter in stellar-dark matter halo properties in low-mass galactic systems. The presence of a metallicity gradient akin to those found in similar systems inhabiting different environments may hint at metallicity gradients in Local Group early-type dwarfs being driven by internal mechanisms.
- ID:
- ivo://CDS.VizieR/J/ApJ/717/277
- Title:
- Chemical composition of old LMC clusters
- Short Name:
- J/ApJ/717/277
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper presents the chemical abundance analysis of a sample of 18 giant stars in three old globular clusters in the Large Magellanic Cloud (LMC), NGC 1786, NGC 2210, and NGC 2257. The derived iron content is [Fe/H]=-1.75+/-0.01dex ({sigma}=0.02dex), -1.65+/-0.02dex ({sigma}=0.04dex), and -1.95+/-0.02dex ({sigma}=0.04dex) for NGC 1786, NGC 2210, and NGC 2257, respectively. All the clusters exhibit similar abundance ratios, with enhanced values (~+0.30dex) of [{alpha}/Fe], consistent with the Galactic halo stars, thus indicating that these clusters have formed from a gas enriched by Type II supernovae. We also found evidence that r-process is the main channel of production of the measured neutron capture elements (Y, Ba, La, Nd, Ce, and Eu). In particular, the quite large enhancement of [Eu/Fe] (~+0.70dex) found in these old clusters clearly indicates a relevant efficiency of the r-process mechanism in the LMC environment.
- ID:
- ivo://CDS.VizieR/J/ApJ/706/1095
- Title:
- Chemical compositions of 26 outer halo stars
- Short Name:
- J/ApJ/706/1095
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Chemical abundances of 26 metal-poor dwarfs and giants are determined from high-resolution and high signal-to-noise ratio spectra obtained with the Subaru/High Dispersion Spectrograph. The sample is selected so that most of the objects have outer-halo kinematics. Self-consistent atmospheric parameters were determined by an iterative procedure based on spectroscopic analysis. Abundances of 13 elements, including {alpha}-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc), iron-peak elements (Cr, Mn, Fe, Ni, Zn), and neutron-capture elements (Y, Ba), are determined by two independent data reduction and local thermodynamic equillibrium analysis procedures, confirming the consistency of the stellar parameters and abundances results.
- ID:
- ivo://CDS.VizieR/J/ApJ/797/116
- Title:
- Chemical properties of M31 star clusters
- Short Name:
- J/ApJ/797/116
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present ages, [Fe/H] and abundances of the {alpha} elements CaI, SiI, TiI, TiII, and light elements MgI, NaI, and AlI for 31 globular clusters (GCs) in M31, which were obtained from high-resolution, high signal-to-noise ratio >60 echelle spectra of their integrated light (IL). All abundances and ages are obtained using our original technique for high-resolution IL abundance analysis of GCs. This sample provides a never before seen picture of the chemical history of M31. The GCs are dispersed throughout the inner and outer halo, from 2.5kpc<R_M31_<117kpc.
- ID:
- ivo://CDS.VizieR/J/A+A/634/A10
- Title:
- Chemo-kinematic properties of Aquarius
- Short Name:
- J/A+A/634/A10
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Dwarf galaxies found in isolation in the Local Group (LG) are unlikely to have interacted with the large LG spirals, and therefore environmental effects such as tidal and ram-pressure stripping should not be the main drivers of their evolution. We aim to provide insight into the internal mechanisms shaping LG dwarf galaxies by increasing our knowledge of the internal properties of isolated systems. Here we focus on the evolved stellar component of the Aquarius dwarf galaxy, whose kinematic and metallicity properties have only recently started to be explored. Spectroscopic data in the region of the near-infrared Ca~II triplet lines has been obtained with FORS2 at the Very Large Telescope for 53 red giant branch (RGB) stars. These data are used to derive line-of-sight velocities and [Fe/H] of the individual RGB stars. We have derived a systemic velocity of -142.2^+1.8^_-1.8_km/s, in agreement with previous determinations from both the HI gas and stars. The internal kinematics of Aquarius appears to be best modelled by a combination of random motions (l.o.s. velocity dispersion of 10.3^+1.6^_-1.3_km/s) and linear rotation (with a gradient -5.0^+1.6^_-1.9_km/s/arcmin) along a P.A.=139_-27_^+17^deg, broadly consistent with the optical projected major axis. This rotation signal is significantly misaligned or even counter-rotating to that derived from the HI gas. We also find the tentative presence of a mild negative metallicity gradient and indications that the metal-rich stars have a colder velocity dispersion than the metal-poor ones. This work represents a significant improvement with respect to previous measurements of the RGB stars of Aquarius, as it doubles the number of member stars already studied in the literature. We speculate that the misaligned rotation between the HI gas and evolved stellar component might have been the result of recent accretion of HI gas, or re-accretion after gas-loss due to internal stellar feedback.
- ID:
- ivo://CDS.VizieR/J/MNRAS/481/3244
- Title:
- Chemo-kinematics from MARVELS
- Short Name:
- J/MNRAS/481/3244
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Combining stellar atmospheric parameters, such as effective temperature, surface gravity, and metallicity, with barycentric radial velocity data provides insight into the chemo-dynamics of the Milky Way and our local Galactic environment. We analyse 3075 stars with spectroscopic data from the Sloan Digital Sky Survey III MARVELS radial velocity survey and present atmospheric parameters for 2343 dwarf stars using the spectral indices method, a modified version of the equivalent width method. We present barycentric radial velocities for a sample of 2610 stars with a median uncertainty of 0.3km/s. We determine stellar ages using two independent methods and calculate ages for 2335 stars with a maximum-likelihood isochronal age-dating method and for 2194 stars with a Bayesian age-dating method. Using previously published parallax data, we compute Galactic orbits and space velocities for 2504 stars to explore stellar populations based on kinematic and age parameters. This study combines good ages and exquisite velocities to explore local chemo-kinematics of the Milky Way, which complements many of the recent studies of giant stars with the APOGEE survey, and we find our results to be in agreement with current chemo-dynamical models of the Milky Way. Particularly, we find from our metallicity distributions and velocity-age relations of a kinematically defined thin disc that the metal-rich end has stars of all ages, even after we clean the sample of highly eccentric stars, suggesting that radial migration plays a key role in the metallicity scatter of the thin disc. All stellar parameters and kinematic data derived in this work are catalogued and published online in machine-readable form.