- ID:
- ivo://CDS.VizieR/J/ApJ/752/146
- Title:
- Star forming complexes in Galactic WMAP sources
- Short Name:
- J/ApJ/752/146
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We analyze Spitzer GLIMPSE, Midcourse Space Experiment (MSX), and Wilkinson Microwave Anisotropy Probe (WMAP) images of the Milky Way to identify 8{mu}m and free-free sources in the Galaxy. Seventy-two of the 88 WMAP sources have coverage in the GLIMPSE and MSX surveys suitable for identifying massive star-forming complexes (SFCs). We measure the ionizing luminosity functions of the SFCs and study their role in the turbulent motion of the Galaxy's molecular gas. We find a total Galactic free-free flux f_{nu}_=46177.6Jy; the 72 WMAP sources with full 8{mu}m coverage account for 34263.5Jy (~75%), with both measurements made at {nu}=94GHz (W band). We find a total of 280 SFCs, of which 168 have unique kinematic distances and free-free luminosities. We use a simple model for the radial distribution of star formation to estimate the free-free and ionizing luminosity for the sources lacking distance determinations. The total dust-corrected ionizing luminosity is Q=(2.9+/-0.5)x10^53^photons/s, which implies a Galactic star formation rate of \dot{M}_{star}_=1.2+/-0.2{M}_{sun}_/yr. We present the (ionizing) luminosity function of the SFCs and show that 24 sources emit half the ionizing luminosity of the Galaxy. The SFCs appear as bubbles in GLIMPSE or MSX images; the radial velocities associated with the bubble walls allow us to infer the expansion velocity of the bubbles. We calculate the kinetic luminosity of the bubble expansion and compare it to the turbulent luminosity of the inner molecular disk. SFCs emitting 80% of the total Galactic free-free luminosity produce a kinetic luminosity equal to 65% of the turbulent luminosity in the inner molecular disk. This suggests that the expansion of the bubbles is a major driver of the turbulent motion of the inner Milky Way molecular gas.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/624/L8
- Title:
- Starlight polarization
- Short Name:
- J/A+A/624/L8
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Galactic dust emission is polarized at unexpectedly high levels, as revealed by Planck. The origin of the observed 20% polarization fractions can be identified by characterizing the properties of optical starlight polarization in a region with maximally polarized dust emission. We measure the R-band linear polarization of 22 stars in a region with a submillimeter polarization fraction of 20%. A subset of 6 stars is also measured in the B, V, and I bands to investigate the wavelength dependence of polarization. We find that starlight is polarized at correspondingly high levels. Through multiband polarimetry we find that the high polarization fractions are unlikely to arise from unusual dust properties, such as enhanced grain alignment. Instead, a favorable magnetic field geometry is the most likely explanation, and is supported by observational probes of the magnetic field morphology. The observed starlight polarization exceeds the classical upper limit of [pV/E(B-V]_{max}_=9%/mag and is at least as high as 13%/mag, as inferred from a joint analysis of Planck data, starlight polarization and reddening measurements. Thus, we confirm that the intrinsic polarizing ability of dust grains at optical wavelengths has long been underestimated.
- ID:
- ivo://CDS.VizieR/J/ApJ/821/44
- Title:
- Star motions in the nuclear cluster of the MW
- Short Name:
- J/ApJ/821/44
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We obtain the basic properties of the nuclear cluster of the Milky Way. First, we investigate the structural properties by constructing a stellar density map of the central 1000" using extinction-corrected old star counts from VISTA, WFC3/IR, and VLT/NACO data. We describe the data using two components. The inner, slightly flattened (axis ratio of q=0.80+/-0.04) component is the nuclear cluster, while the outer component corresponds to the stellar component of the circumnuclear zone. For the nuclear cluster, we measure a half-light radius of 178+/-51"~7+/-2pc and a luminosity of M_Ks_=-16.0+/-0.5. Second, we measure detailed dynamics out to 4pc. We obtain 10351 proper motions from AO data, and 2513 radial velocities from VLT/SINFONI data. We determine the cluster mass by means of isotropic spherical Jeans modeling. We fix the distance to the Galactic Center and the mass of the supermassive black hole. We model the cluster either with a constant M/L or with a power law. For the latter case, we obtain a slope of 1.18+/-0.06. We get a cluster mass within 100" of M_100"_=(6.09+/-0.53|_fixR_0_+/-0.97|_R_0_)x10^6^M_{sun}_ for both modeling approaches. A model which includes the observed flattening gives a 47% larger mass (see Chatzopoulos et al. 2015MNRAS.447..948C). Our results slightly favor a core over a cusp in the mass profile. By minimizing the number of unbound stars within 8", we obtain a distance of R_0_=8.53_-0.15_^+0.21^kpc when using an R0 supermassive black hole mass relation from stellar orbits. Combining our results, we obtain M/L=0.51+/-0.12M_{sun}/L_{sun},Ks_, which is roughly consistent with a Chabrier IMF.
- ID:
- ivo://CDS.VizieR/J/ApJ/749/71
- Title:
- Star polarization in the Galactic plane
- Short Name:
- J/ApJ/749/71
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This work combines new observations of NIR starlight linear polarimetry with previously simulated observations in order to constrain dynamo models of the Galactic magnetic field. Polarimetric observations were obtained with the Mimir instrument on the Perkins Telescope in Flagstaff, AZ, along a line of constant Galactic longitude ({ell}=150{deg}) with 17 pointings of the 10'x10' field of view between -75{deg}<b<10{deg}, with more frequent pointings toward the Galactic midplane. A total of 10962 stars were photometrically measured and 1116 had usable polarizations. The observed distribution of polarization position angles with Galactic latitude and the cumulative distribution function of the measured polarizations are compared to predicted values. While the predictions lack the effects of turbulence and are therefore idealized, this comparison allows significant rejection of A0-type magnetic field models. S0 and disk-even halo-odd magnetic field geometries are also rejected by the observations, but at lower significance. New predictions of spiral-type, axisymmetric magnetic fields, when combined with these new NIR observations, constrain the Galactic magnetic field spiral pitch angle to -6{deg}+/-2{deg}.
- ID:
- ivo://CDS.VizieR/J/ApJ/714/663
- Title:
- Stellar density map of the Milky Way
- Short Name:
- J/ApJ/714/663
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We map the stellar structure of the Galactic thick disk and halo by applying color-magnitude diagram (CMD) fitting to photometric data from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey. The SEGUE imaging scans allow, for the first time, a comprehensive analysis of Milky Way structure at both high and low latitudes using uniform Sloan Digital Sky Survey photometry. Incorporating photometry of all relevant stars simultaneously, CMD fitting bypasses the need to choose single tracer populations. Using old stellar populations of differing metallicities as templates, we obtain a sparse three-dimensional map of the stellar mass distribution at |Z|>1kpc. Fitting a smooth Milky Way model comprising exponential thin and thick disks and an axisymmetric power-law halo allows us to constrain the structural parameters of the thick disk and halo. The thick-disk scale height and length are well constrained at 0.75+/-0.07kpc and 4.1+/-0.4kpc, respectively.
- ID:
- ivo://CDS.VizieR/J/A+A/653/A72
- Title:
- Stellar parameters and Li abundances from GES iDR6
- Short Name:
- J/A+A/653/A72
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- After more than 50 years, astronomical research still struggles to reconstruct the history of lithium enrichment in the Galaxy and to establish the relative importance of the various ^7^Li sources in enriching the interstellar medium (ISM) with this fragile element. To better trace the evolution of lithium in the Milky Way discs, we exploit the unique characteristics of a sample of open clusters (OCs) and field stars for which high-precision ^7^Li abundances and stellar parameters are homogeneously derived by the Gaia-ESO Survey (GES). We derive possibly un-depleted ^7^Li abundances for 26 OCs and star forming regions with ages from young (~3Myr) to old (~4.5Gyr), spanning a large range of galactocentric distances, 5<RGC/kpc<15, which allows us to reconstruct the local late Galactic evolution of lithium as well as its current abundance gradient along the disc. Field stars are added to look further back in time and to constrain ^7^Li evolution in other Galactic components. The data are then compared to theoretical tracks from chemical evolution models that implement different ^7^Li forges. Thanks to the homogeneity of the GES analysis, we can combine the maximum average ^7^Li abundances derived for the clusters with ^7^Li measurements in field stars. We find that the upper envelope of the ^7^Li abundances measured in field stars of nearly solar metallicities (-0.3<[Fe/H]/dex<+0.3) traces very well the level of lithium enrichment attained by the ISM as inferred from observations of cluster stars in the same metallicity range. We confirm previous findings that the abundance of ^7^Li in the solar neighbourhood does not decrease at supersolar metallicity. The comparison of the data with the chemical evolution model predictions favours a scenario in which the majority of the ^7^Li abundance in meteorites comes from novae. Current data also seem to suggest that the nova rate flattens out at later times. This requirement might have implications for the masses of the white dwarf nova progenitors and deserves further investigation. Neutrino-induced reactions taking place in core-collapse supernovae also produce some fresh lithium. This likely makes a negligible contribution to the meteoritic abundance, but could be responsible for a mild increase in the ^7^Li abundance in the ISM of low-metallicity systems that would counterbalance the astration processes.
- ID:
- ivo://CDS.VizieR/J/AJ/159/287
- Title:
- Stellar parameters in Ophiuchus Stream with MMT
- Short Name:
- J/AJ/159/287
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new kinematic data for the Ophiuchus stellar stream. Spectra have been taken of member candidates at the Multiple Mirror Telescope (MMT) using Hectospec, Hectochelle, and Binospec, which provide more than 1800 new velocities. Combined with proper-motion measurements of stars in the field by the Gaia-DR2 catalog, we have derived stream membership probabilities, resulting in the detection of more than 200 likely members. These data show the stream extends to more than three times the length shown in the discovery data. A spur to the main stream is also detected. The high-resolution spectra allow us to resolve the stellar velocity dispersion, found to be 1.6{+/-}0.3km/s.
- ID:
- ivo://CDS.VizieR/J/A+A/614/A146
- Title:
- Stellar parameters of NGC3201 RGB stars
- Short Name:
- J/A+A/614/A146
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The origin of the globular cluster (GC) NGC3201 is under debate. Its retrograde orbit points to an extragalactic origin, but no further chemical evidence supports this idea. Light-element chemical abundances are useful to tag GCs and can be used to shed light in this discussion. Recently it was shown that the CN and CH indices are useful to identify anomalous GCs out of typical Milky Way GCs. A possible origin of anomalous clusters is the merger of two GCs and/or nucleus of a dwarf galaxy. We aim at deriving CN and CH band strengths for red giant stars in NGC3201 and compare with photometric indices and high-resolution spectroscopy and discuss in the context of GC chemical tagging. We measure molecular band indices of S(3839) and G4300 for CN and CH, respectively from low-resolution spectra of red giant stars. Gravity and temperature effects are removed. Photometric indices are used to indicate further chemical information on C+N+O or s-process element abundances, not derived from low-resolution spectra. We found three groups on the CN-CH distribution. A main sequence (S1), a secondary less-populated sequence (S2), and a group of peculiar (pec) CN-weak and CH-weak stars, one of which was previously known. The three groups seem to have different C+N+O and/or s-process element abundances, to be confirmed by high-resolution spectroscopy. These are typical characteristics of anomalous GCs. The CN distribution of NGC3201 is quadrimodal, which is more common in anomalous clusters. However, NGC3201 does not belong to the trend of anomalous GCs in the mass-size relation. NGC3201 shows signs that it can be chemically tagged as anomalous: unusual CN-CH relation, indications that pec-S1-S2 is an increasing sequence of C+N+O or s-process element abundances, and a multimodal CN distribution that seems to correlate with s-process element abundances. The differences are: it has a debatable Fe-spread and it does not follow the trend of mass-size of all anomalous clusters. Three scenarios are postulated here: (i) if the sequence pec-S1-S2 has increasing C+N+O and s-process element abundances, NGC3201 would be the first anomalous GC out of the mass-size relation; (ii) if the abundances are almost constant, NGC3201 would be the first non-anomalous GC with multiple CN-CH anti-correlation groups, or (iii) it would be the first anomalous GC without variations in C+N+O and s-process element abundances. In all cases, the definition of anomalous clusters and the scenario where they have an extragalactic origin must be revised.
- ID:
- ivo://CDS.VizieR/J/ApJ/764/154
- Title:
- Stellar populations in the central 0.5pc. I.
- Short Name:
- J/ApJ/764/154
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new high angular resolution near-infrared spectroscopic observations of the nuclear star cluster surrounding the Milky Way's central supermassive black hole. Using the integral-field spectrograph OSIRIS on Keck II behind the laser-guide-star adaptive optics system, this spectroscopic survey enables us to separate early-type (young, 4-6Myr) and late-type (old, >1Gyr) stars with a completeness of 50% down to K'=15.5mag, which corresponds to ~10M_{sun}_ for the early-type stars. This work increases the radial extent of reported OSIRIS/Keck measurements by more than a factor of three from 4" to 14" (0.16 to 0.56pc), along the projected disk of young stars. For our analysis, we implement a new method of completeness correction using a combination of star-planting simulations and Bayesian inference. We assign probabilities for the spectral type of every source detected in deep imaging down to K'=15.5mag using information from spectra, simulations, number counts, and the distribution of stars. The inferred radial surface-density profiles, {Sigma}(R){prop.to}R^-{Gamma}^, for the young stars and late-type giants are consistent with earlier results ({Gamma}_early_=0.93+/-0.09, {Gamma}_late_=0.16+/-0.07). The late-type surface-density profile is approximately flat out to the edge of the survey. While the late-type stellar luminosity function is consistent with the Galactic bulge, the completeness-corrected luminosity function of the early-type stars has significantly more young stars at faint magnitudes compared with previous surveys with similar depth. This luminosity function indicates that the corresponding mass function of the young stars is likely less top-heavy than that inferred from previous surveys.
- ID:
- ivo://CDS.VizieR/J/MNRAS/451/3693
- Title:
- Stellar yields and the initial mass function
- Short Name:
- J/MNRAS/451/3693
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a set of 144 Galactic chemical evolution models applied to a Milky Way analogue, computed using four sets of low+intermediate star nucleosynthetic yields, six massive star yield compilations, and six functional forms for the initial mass function. A comparison is made between a grid of multiphase chemical evolution models computed with these yield combinations and empirical data drawn from the Milky Way's disc, including the solar neighbourhood. By means of a {chi}^2^ methodology, applied to the results of these multiphase models, the best combination of stellar yields and initial mass function capable of reproducing these observations is identified.