- ID:
- ivo://CDS.VizieR/J/ApJ/872/158
- Title:
- Survey of Class II sources in Taurus with ALMA
- Short Name:
- J/ApJ/872/158
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have conducted a survey of young single and multiple systems in the Taurus-Auriga star-forming region with the Atacama Large Millimeter Array (ALMA), substantially improving both the spatial resolution and sensitivity with which individual protoplanetary disks in these systems have been observed. These ALMA observations can resolve binary separations as small as 25-30au and have an average 3{sigma} detection level of 0.35mJy, equivalent to a disk mass of 4x10^-5^M_{sun}_ for an M3 star. Our sample was constructed from stars that have an infrared excess and/or signs of accretion and have been classified as Class II. For the binary and higher-order multiple systems observed, we detect {lambda}=1.3mm continuum emission from one or more stars in all of our target systems. Combined with previous surveys of Taurus, our 21 new detections increase the fraction of millimeter-detected disks to over 75% in all categories of stars (singles, primaries, and companions) earlier than spectral type M6 in the Class II sample. Given the wealth of other information available for these stars, this has allowed us to study the impact of multiplicity with a much larger sample. While millimeter flux and disk mass are related to stellar mass as seen in previous studies, we find that both primary and secondary stars in binary systems with separations of 30-4200au have lower values of millimeter flux as a function of stellar mass than single stars. We also find that for these systems, the circumstellar disk around the primary star does not dominate the total disk mass in the system and contains on average 62% of the total mass.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJS/181/62
- Title:
- Survey of young solar analogs
- Short Name:
- J/ApJS/181/62
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from an adaptive optics survey for substellar and stellar companions to Sun-like stars. The survey targeted 266 F5-K5 stars in the 3Myr-3Gyr age range with distances of 10-190pc. Results from the survey include the discovery of two brown dwarf companions (HD 49197B and HD 203030B), 24 new stellar binaries, and a triple system. We infer that the frequency of 0.012-0.072M_{sun}_ brown dwarfs in 28-1590AU orbits around young solar analogs is 3.2^+3.1^_-2.7_% (2{sigma} limits). The result demonstrates that the deficiency of substellar companions at wide orbital separations from Sun-like stars is less pronounced than in the radial velocity "brown dwarf desert." We infer that the mass distribution of companions in 28-1590AU orbits around solar-mass stars follows a continuous dN/dM_2_{prop.to}M^-0.4^_2_ relation over the 0.01-1.0M_{sun}_ secondary mass range. While this functional form is similar to that for isolated objects less than 0.1M_{sun}_, over the entire 0.01-1.0M_{sun}_ range, the mass functions of companions and of isolated objects differ significantly. Based on this conclusion and on similar results from other direct imaging and radial velocity companion surveys in the literature, we argue that the companion mass function follows the same universal form over the entire range between 0 and 1590AU in orbital semimajor axis and ~0.01-20M_{sun}_ in companion mass. In this context, the relative dearth of substellar versus stellar secondaries at all orbital separations arises naturally from the inferred form of the companion mass function.
- ID:
- ivo://CDS.VizieR/J/A+A/556/A150
- Title:
- SWEETCat I. Stellar parameters for host stars
- Short Name:
- J/A+A/556/A150
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper we present new precise atmospheric parameters for stars with planets. We then take the opportunity to present a new catalogue of stellar parameters for FGK and M stars with planets detected by radial velocity, transit, and astrometry programs. Stellar atmospheric parameters and masses for the sample were derived assuming LTE and using high resolution and high signal-to-noise spectra. The methodology used is based on the measurement of equivalent widths for a list of iron lines and making use of iron ionization and excitation equilibrium principles. For the catalog, and whenever possible, we used parameters derived in previous works published by our team, using well defined methodologies for the derivation of stellar atmospheric parameters. This set of parameters amounts to over 65% of all planet host stars known, including more than 90% of all stars with planets discovered through radial velocity surveys. For the remaining targets, stellar parameters were collected from the literature.
1184. SWEET-Cat updated
- ID:
- ivo://CDS.VizieR/J/A+A/620/A58
- Title:
- SWEET-Cat updated
- Short Name:
- J/A+A/620/A58
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Exoplanets have now been proven to be very common. The number of its detections continues to grow following the development of better instruments and missions. One key step for the understanding of these worlds is their characterization, which mostly depend on their host stars. We perform a significant update of the Stars With ExoplanETs CATalog (SWEET-Cat), a unique compilation of precise stellar parameters for planet-host stars provided for the exoplanet community. We made use of high-resolution spectra for planet-host stars, either observed by our team or found in several public archives. The new spectroscopic parameters were derived for the spectra following the same homogeneous process (ARES+MOOG). The host star parameters were then merged together with the planet properties listed in exoplanet.eu to perform simple data analysis. We present new spectroscopic homogeneous parameters for 106 planet-host stars. Sixty-three planet hosts are also reviewed with new parameters. We also show that there is a good agreement between stellar parameters derived for the same star but using spectra obtained from different spectrographs. The planet-metallicity correlation is reviewed showing that the metallicity distribution of stars hosting low-mass planets (below 30M_{sun}_) is indistinguishable from that from the solar neighborhood sample in terms of metallicity distribution.
- ID:
- ivo://CDS.VizieR/J/ApJS/240/21
- Title:
- Symbiotic stars with 2MASS, WISE & Gaia data
- Short Name:
- J/ApJS/240/21
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new census of Galactic and extragalactic symbiotic stars (SySts). This compilation contains 323 known and 87 candidate SySts. Of the confirmed SySts, 257 are Galactic and 66 extragalactic. The spectral energy distributions (SEDs) of 348 sources have been constructed using 2MASS and AllWISE data. Regarding the Galactic SySts, 74% are S types, 13% D, and 3.5% D'. S types show an SED peak between 0.8 and 1.7{mu}m, whereas D types show a peak at longer wavelengths between 2 and 4{mu}m. D' types, on the other hand, display a nearly flat profile. Gaia distances and effective temperatures are also presented. According to their Gaia distances, S types are found to be members of both thin and thick Galactic disk populations, while S+IR and D types are mainly thin disk sources. Gaia temperatures show a reasonable agreement with the temperatures derived from SEDs within their uncertainties. A new census of the OVI{lambda}6830 Raman-scattered line in SySts is also presented. From a sample of 298 SySts with available optical spectra, 55% are found to emit the line. No significant preference is found among the different types. The report of the OVI{lambda}6830 Raman-scattered line in non-SySts is also discussed as well as the correlation between the Raman-scattered OVI line and X-ray emission. We conclude that the presence of the OVI Raman-scattered line still provides a strong criterion for identifying a source as a SySt.
- ID:
- ivo://CDS.VizieR/J/A+A/650/A73
- Title:
- Synthetic XUV spectra of GJ 3470
- Short Name:
- J/A+A/650/A73
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Neptune-size exoplanets seem particularly sensitive to atmospheric evaporation, making it essential to characterize the stellar high-energy radiation that drives this mechanism. This is particularly important with M dwarfs, which emit a large and variable fraction of their luminosity in the ultraviolet and can display strong flaring behavior. The warm Neptune GJ 3470b, hosted by an M2 dwarf, was found to harbor a giant exosphere of neutral hydrogen thanks to three transits observed with the Hubble Space Telescope Imaging Spectrograph (HST/STIS). Here we report on three additional transit observations from the Panchromatic Comparative Exoplanet Treasury program, obtained with the HST Cosmic Origin Spectrograph. These data confirm the absorption signature from GJ 3470b's exosphere in the stellar Lyman-{alpha} line and demonstrate its stability over time. No planetary signatures are detected in other stellar lines, setting a 3{sigma} limit on GJ 3470b's far-ultraviolet (FUV) radius at 1.3 times its Roche lobe radius. We detect three flares from GJ 3470. They show different spectral energy distributions but peak consistently in the SiIII line, which traces intermediate-temperature layers in the transition region. These layers appear to play a particular role in GJ 3470's activity as emission lines that form at lower or higher temperatures than SiIII evolved differently over the long term. Based on the measured emission lines, we derive synthetic X-ray and extreme-ultraviolet (X+EUV, or XUV) spectra for the six observed quiescent phases, covering one year, as well as for the three flaring episodes. Our results suggest that most of GJ 3470's quiescent high-energy emission comes from the EUV domain, with flares amplifying the FUV emission more strongly. The neutral hydrogen photoionization lifetimes and mass loss derived for GJ 3470b show little variation over the epochs, in agreement with the stability of the exosphere. Simulations informed by our XUV spectra are required to understand the atmospheric structure and evolution of GJ 3470b and the role played by evaporation in the formation of the hot-Neptune desert.
- ID:
- ivo://CDS.VizieR/J/A+A/625/A59
- Title:
- tau Boo Radial velocities & astrometric data
- Short Name:
- J/A+A/625/A59
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The formation of planets in compact or highly eccentric binaries and the migration of hot Jupiters are two outstanding problems in planet formation. Detailed characterisation of known systems is important for informing and testing models. The hot Jupiter {tau} Boo Ab orbits the primary star in the long-period (P>~1000yr), highly eccentric (e~0.9) double star system {tau} Bootis. Due to the long orbital period, the orbit of the stellar binary is poorly constrained. Here we aim to constrain the orbit of the stellar binary {tau} Boo AB in order to investigate the formation and migration history of the system. The mutual orbital inclination of the stellar companion and the hot Jupiter has important implications for planet migration. The binary eccentricity and periastron distance are important for understanding the conditions under which {tau} Boo formed. We combine more than 150 years of astrometric data with twenty-five years of high-precision radial velocities. The combination of sky-projected and line-of-sight measurements places tight constraints on the orbital inclination, eccentricity, and periastron distance of {tau} Boo AB. We determine the orbit of {tau} Boo B and find an orbital inclination of 47.2^+2.7^_-3.7_{deg}, a periastron distance of 28.3^+2.3^_-3.0_au, and an eccentricity of 0.87^+0.04^_-0.03_. We find that the orbital inclinations of {tau} Boo Ab and {tau} Boo B, as well as the stellar spin-axis of {tau} Boo A coincide at ~45 degrees, a result consistent with the assumption of a well-aligned, coplanar system. The likely aligned, coplanar configuration suggests planetary migration within a well-aligned protoplanetary disc. Due to the high eccentricity and small periastron distance of {tau} Boo B, the protoplanetary disc was tidally truncated at ~6au. We suggest that {tau} Boo Ab formed near the edge of the truncated disc and migrated inwards with high eccentricity due to spiral waves generated by the stellar companion.
- ID:
- ivo://CDS.VizieR/J/ApJ/803/90
- Title:
- {tau} Cet chemical composition
- Short Name:
- J/ApJ/803/90
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- {tau} Ceti (HD10700), a G8 dwarf with mass 0.78M_{sun}_, is a close (3.65pc) Sun-like star where five possibly terrestrial planet candidates (minimum masses of 2, 3.1, 3.5, 4.3, and 6.7M_{Earth}_) have recently been discovered. We report abundances of 23 elements using spectra from the MIKE spectrograph on Magellan. We find [Fe/H]=-0.49 and T_eff_=5387K. Using stellar models with the abundances determined here, we calculate the position of the classical habitable zone (HZ) with time. At the current best fit age, 7.63_-1.5_^+0.87^Gyr, up to two planets (e and f) may be in the HZ, depending on atmospheric properties. The Mg/Si ratio of the star is found to be 1.78, which is much greater than for Earth (~1.2). With a system that has such an excess of Mg/Si ratio it is possible that the mineralogical make-up of planets around {tau} Ceti could be significantly different from that of Earth, with possible oversaturation of MgO, resulting in an increase in the content of olivine and ferropericlase compared with Earth. The increase in MgO would have a drastic impact on the rheology of the mantles of the planets around {tau} Ceti.
1189. Taurus ultra-wide pairs
- ID:
- ivo://CDS.VizieR/J/A+A/599/A14
- Title:
- Taurus ultra-wide pairs
- Short Name:
- J/A+A/599/A14
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This work analyses the spatial distribution of stars in Taurus with a specific focus on multiple stars and wide pairs in order to derive new constraints on star formation and early dynamical evolution scenarios. We collected the multiplicity data of stars in Taurus to build an up-to-date stellar/multiplicity catalog. We first present a general study of nearest-neighbor statistics on spatial random distribution, comparing its analytical distribution and moments to those obtained from Monte Carlo samplings. We introduce the one-point correlation {Psi} function to complement the pair correlation function and define the spatial regimes departing from randomness in Taurus. We then perform a set of statistical studies to characterize the binary regime that prevails in Taurus. The {Psi} function in Taurus has a scale-free trend with a similar exponent as the correlation function at small scale. It extends almost 3 decades up to ~60kAU showing a potential extended wide binary regime. This was hidden in the correlation function due to the clustering pattern blending. Distinguishing two stellar populations, single stars versus multiple systems (separation <=1kAU), within Class II/III stars observed at high angular resolution, we highlight a major spatial neighborhood difference between the two populations using nearest-neighbor statistics. The multiple systems are three times more likely to have a distant companion within 10kAU when compared to single stars. We show that this is due to the presence of most probable physical ultra-wide pairs (UWPs, defined as such from their mutual nearest neighbor property), that are themselves generally composed of multiple systems containing up to five stars altogether. More generally, our work highlights; 1) a new large population of candidate UWPs in Taurus within the range 1-60kAU in Taurus and 2) the major local structural role they play up to 60kAU. There are three different types of UWPs; either composed of two tight and comparatively massive stars (MM), by one single and one multiple (SM), or by two distant low-mass singles (SS) stars. These UWPs are biased towards high multiplicity and higher-stellar-mass components at shorter separations. The multiplicity fraction per ultra-wide pair with separation less than 10kAU may be as high as 83.5+/-19.6%. We suggest that these young pre-main sequence UWPs may be pristine imprints of their spatial configuration at birth resulting from a cascade fragmentation scenario of the natal molecular core. They could be the older counterparts, at least for those separated by less than 10kAU, to the <=0.5Myr prestellar cores/Class 0 multiple objects observed at radio/millimeter wavelengths.
- ID:
- ivo://CDS.VizieR/J/A+A/620/A27
- Title:
- Taurus ultra-wide pairs. II.
- Short Name:
- J/A+A/620/A27
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Multiplicity and clustering of young pre-main sequence stars appear as critical clues to understand and constrain the star formation process. Taurus is the archetypical example of the most quiescent star forming regions that may still retain primeval signatures of star formation. This work identifies local overdense stellar structures as a critical scale between wide pairs and loose groups in Taurus. Using the density-based spatial clustering of applications with noise (dbscan) algorithm, and setting its free parameters based on the one-point correlation function and the k-nearest neighbor statistics, we have extracted reliably overdense structures from the sky-projected spatial distribution of stars. Nearly half of the entire stellar population in Taurus is found to be concentrated in 20 very dense, tiny and prolate regions called NESTs (for Nested Elementary STructures). They are regularly spaced (~2pc) and mainly oriented along the principal gas filaments axes. Each NEST contains between four and 23 stars. Inside NESTs, the surface density of stars may be as high as 2500pc^-2^ and the mean value is 340pc^-2^. Nearly half (11) of these NESTs contain about 75% of the class 0 and I objects. The balance between Class I, II, and, III fraction within the NESTs suggests that they may be ordered as an evolutionary temporal scheme, some of them getting infertile with time, while other still giving birth to young stars. We have inferred that only 20% of stars in Taurus do not belong to any kind of stellar groups (either multiple system, ultra wide pairs or NESTs). The mass-size relation for stellar NESTs is very close to the Bonnor-Ebert expectation. The range in mass is about the same as that of dense molecular cores. The distribution in size is bimodal peaking at 12.5 and 50kAU and the distribution of the number of YSOs in NESTs as a function of size exhibits two regimes. We propose that the NESTs in their two size regimes represent the spatial imprints of stellar distribution at birth as they may have emerged within few millions years from their natal cloud either from a single core or from a chain of cores. We have identified them as the preferred sites of star formation in Taurus. These NESTs are the regions of highest stellar density and intermediate spatial scale structures between ultra-wide pairs and loose groups.