- ID:
- ivo://CDS.VizieR/J/A+A/631/A136
- Title:
- 7 CMa system velocity curves
- Short Name:
- J/A+A/631/A136
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of a second planet orbiting the K giant star 7 CMa based on 166 high-precision radial velocities obtained with Lick, HARPS, UCLES and SONG. The periodogram analysis reveals two periodic signals of approximately 745 and 980d, associated to planetary companions. A double-Keplerian orbital fit of the data reveals two Jupiter-like planets with minimum masses M_b_sini~1.9Mj and M_c_sini~0.9Mj, orbiting at semi-major axes of a_b_~1.75au and a_c_~2.15au, respectively. Given the small orbital separation and the large minimum masses of the planets close encounters may occur within the time baseline of the observations, thus, a more accurate N-body dynamical modeling of the available data is performed. The dynamical best-fit solution leads to collision of the planets and we explore the long-term stable configuration of the system in a Bayesian framework, confirming that 13% of the posterior samples are stable for at least 10Myr. The result from the stability analysis indicates that the two-planets are trapped in a low-eccentricity 4:3 mean-motion resonance. This is only the third discovered system to be inside a 4:3 resonance, making it very valuable for planet formation and orbital evolution models.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/615/A117
- Title:
- 55 Cnc geocoronal emission lines template
- Short Name:
- J/A+A/615/A117
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The high-energy X-ray to ultraviolet (XUV) irradiation of close-in planets by their host star influences their evolution and might be responsible for the existence of a population of ultra-short period planets eroded to their bare core. In orbit around a bright, nearby G-type star, the super-Earth 55 Cnc e offers the possibility to address these issues through transit observations at UV wavelengths. We used the Hubble Space Telescope to observe the transit in the far-ultraviolet (FUV) over three epochs in April 2016, January 2017, and February 2017. Together, these observations cover nearly half of the orbital trajectory in between the two quadratures, and reveal significant short- and long-term variability in 55 Cnc chromospheric emission lines. In the last two epochs, we detected a larger flux in the CIII, SiIII, and SiIV lines after the planet passed the approaching quadrature, followed by a flux decrease in the SiIV doublet. In the second epoch these variations are contemporaneous with flux decreases in the SiII and CII doublet. All epochs show flux decreases in the NV doublet as well, albeit at different orbital phases. These flux decreases are consistent with absorption from optically thin clouds of gas, are mostly localized at low and redshifted radial velocities in the star rest frame, and occur preferentially before and during the planet transit. These three points make it unlikely that the variations are purely stellar in origin, yet we show that the occulting material is also unlikely to originate from the planet. We thus tentatively propose that the motion of 55 Cnc e at the fringes of the stellar corona leads to the formation of a cool coronal rain. The inhomogeneity and temporal evolution of the stellar corona would be responsible for the differences between the three visits. Additional variations are detected in the CII doublet in the first epoch and in the OI triplet in all epochs with a different behavior that points toward intrinsic stellar variability. Further observations at FUV wavelengths are required to disentangle definitively between star-planet interactions in the 55 Cnc system and the activity of the star.
- ID:
- ivo://CDS.VizieR/J/A+A/619/A1
- Title:
- 55 Cnc radial velocities and photometry
- Short Name:
- J/A+A/619/A1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Orbiting a bright, nearby star the 55 Cnc system offers a rare opportunity to study a multiplanet system that has a wide range of planetary masses and orbital distances. Using two decades of photometry and spectroscopy data, we have measured the rotation of the host star and its solar-like magnetic cycle. Accounting for this cycle in our velocimetric analysis of the system allows us to revise the properties of the outermost giant planet and its four planetary companions. The innermost planet 55 Cnc e is an unusually close-in super-Earth, whose transits have allowed for detailed follow-up studies. Recent observations favor the presence of a substantial atmosphere yet its composition, and the nature of the planet, remain unknown. We combined our derived planet mass (Mp=8.0+/-0.3M_{Earth}_) with refined measurement of its optical radius derived from HST/STIS observations (Rp=1.88+/-0.03R_{Earth}_ over 530-750nm) to revise the density of 55 Cnc e (rho=6.7+/-0.4g/cm^3^). Based on these revised properties we have characterized possible interiors of 55 Cnc e using a generalized Bayesian model. We confirm that the planet is likely surrounded by a heavyweight atmosphere, contributing a few percents of the planet radius. While we cannot exclude the presence of a water layer underneath the atmosphere, this scenario is unlikely given the observations of the planet across the entire spectrum and its strong irradiation. Follow-up observations of the system in photometry and in spectroscopy over different time-scales are needed to further investigate the nature and origin of this iconic super-Earth.
- ID:
- ivo://CDS.VizieR/J/ApJ/891/171
- Title:
- COCONUTS. I. Spectra of a WD and T4 comoving syst.
- Short Name:
- J/ApJ/891/171
- Date:
- 17 Jan 2022 13:06:37
- Publisher:
- CDS
- Description:
- We present the first discovery from the COol Companions ON Ultrawide orbiTS (COCONUTS) program, a large-scale survey for wide-orbit planetary and substellar companions. We have discovered a comoving system COCONUTS-1, composed of a hydrogen-dominated white dwarf (PSOJ058.9855+45.4184; d=31.5pc) and a T4 companion (PSOJ058.9869+45.4296) at a 40.6" (1280au) projected separation. We derive physical properties for COCONUTS-1B from (1) its near-infrared spectrum using cloudless Sonora atmospheric models, and (2) its luminosity and the white dwarf's age (7.3_-1.6_^+2.8^Gyr) using Sonora evolutionary models. The two methods give consistent temperatures and radii, but atmospheric models infer a lower surface gravity and therefore an unphysically young age. Assuming evolutionary model parameters (T_eff_=1255_-8_^+6^K, logg=5.44_-0.03_^+0.02^dex, R=0.789_-0.005_^+0.011^R_Jup_), we find that cloudless model atmospheres have brighter Y- and J-band fluxes than the data, suggesting that condensate clouds have not fully dispersed around 1300K. The W2 flux (4.6{mu}m) of COCONUTS-1B is fainter than models, suggesting non-equilibrium mixing of CO. To investigate the gravity dependence of the L/T transition, we compile all 60 known L6-T6 benchmarks and derive a homogeneous set of temperatures, surface gravities, and masses. As is well known, young, low-gravity late-L dwarfs have significantly fainter, redder near-infrared photometry and ~200-300K cooler temperatures than old, high-gravity objects. Our sample now reveals such gravity dependence becomes weaker for T dwarfs, with young objects having comparable near-infrared photometry and ~100K cooler temperatures compared to old objects. Finally, we find that young objects have a larger amplitude J-band brightening than old objects, and also brighten at H band as they cross the L/T transition.
- ID:
- ivo://CDS.VizieR/J/A+A/423/755
- Title:
- Color-Induced Displacement double stars in SDSS
- Short Name:
- J/A+A/423/755
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the first successful application of the astrometric color-induced displacement technique (CID, the displacement of the photocenter between different band-passes dur to a varying contribution of differently colored components to the total light), originally proposed by Wielen (1996A&A...314..679W) for discovering unresolved binary stars.
- ID:
- ivo://CDS.VizieR/I/121
- Title:
- Common proper motions stars in AGK3
- Short Name:
- I/121
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The 326 common proper motion systems that have a ratio angular separation to proper motion smaller than 1000 years are in table1. The number of optical systems is expected to be around 4. Each system fills a 256 byte-length record that may also be considered as two 128 byte-length records for print-out edition. The 113 common proper motion systems that have a ratio angular separation to proper motion between 1000 and 3500 years are in table2. The number of physical systems is expected to be around 68. The presentation is the same as for table1. This table differs from the original printed version, since the the magnitude and the spectral type of the secondary component of the 47th system were corrected. The system 47 was also added to the notes.
- ID:
- ivo://CDS.VizieR/J/ApJ/835/75
- Title:
- Common proper motion stars in the Kepler field
- Short Name:
- J/ApJ/835/75
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In a search of proper motion catalogs for common proper motion stars in the field of the Kepler spacecraft I identified 93 likely binary systems. A comparison of their rotation periods is a test of the gyrochronology concept. To find their periods I calculated the autocorrelation function (ACF) of the Kepler mission photometry for each star. In most systems for which good periods can be found, the cooler star has a longer period than the hotter component, in general agreement with models. However, there is a wide range in the gradients of lines connecting binary pairs in a period-color diagram. Furthermore, near the solar color, only a few stars have longer periods than the Sun, suggesting that they, and their cooler companions, are not much older than the Sun. In addition, there is an apparent gap at intermediate periods in the period distribution of the late K and early M stars. Either star formation in this direction has been variable, or stars evolve in period at a non-uniform rate, or some stars evolve more rapidly than others at the same mass. Finally, using the ACF as a measure of the activity level, I found that while the F, G, and early K stars become less active as their periods increase, there is no correlation between period and activity for the mid K to early M stars.
- ID:
- ivo://CDS.VizieR/J/AJ/153/257
- Title:
- Comoving stars in Gaia DR1
- Short Name:
- J/AJ/153/257
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The primary sample of the Gaia Data Release 1 is the Tycho-Gaia Astrometric Solution (TGAS): {simeq}2 million Tycho-2 sources with improved parallaxes and proper motions relative to the initial catalog. This increased astrometric precision presents an opportunity to find new binary stars and moving groups. We search for high-confidence comoving pairs of stars in TGAS by identifying pairs of stars consistent with having the same 3D velocity using a marginalized likelihood ratio test to discriminate candidate comoving pairs from the field population. Although we perform some visualizations using (bias-corrected) inverse parallax as a point estimate of distance, the likelihood ratio is computed with a probabilistic model that includes the covariances of parallax and proper motions and marginalizes the (unknown) true distances and 3D velocities of the stars. We find 13085 comoving star pairs among 10606 unique stars with separations as large as 10pc (our search limit). Some of these pairs form larger groups through mutual comoving neighbors: many of these pair networks correspond to known open clusters and OB associations, but we also report the discovery of several new comoving groups. Most surprisingly, we find a large number of very wide (>1pc) separation comoving star pairs, the number of which increases with increasing separation and cannot be explained purely by false-positive contamination. Our key result is a catalog of high-confidence comoving pairs of stars in TGAS. We discuss the utility of this catalog for making dynamical inferences about the Galaxy, testing stellar atmosphere models, and validating chemical abundance measurements.
- ID:
- ivo://CDS.VizieR/J/MNRAS/469/3802
- Title:
- Compact binary systems around Kepler red giants
- Short Name:
- J/MNRAS/469/3802
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an analysis of 168 oscillating red giants from NASA's Kepler mission that exhibit anomalous peaks in their Fourier amplitude spectra. These peaks result from ellipsoidal variations that are indicative of binary star systems, at frequencies such that the orbit of any stellar companion would be within the convective envelope of the red giant. Alternatively, the observed phenomenon may be due to a close binary orbiting a red giant in a triple system, or chance alignments of foreground or background binary systems contaminating the target pixel aperture. We identify 87 stars in the sample as chance alignments using a combination of pixel Fourier analysis and difference imaging. We find that in the remaining 81 cases, the anomalous peaks are indistinguishable from the target star to within 4 arcsec, suggesting a physical association. We examine a GALAXIA model of the Kepler field of view to estimate background star counts and find that it is highly unlikely that all targets can be explained by chance alignments. From this, we conclude that these stars may comprise a population of physically associated systems.
- ID:
- ivo://CDS.VizieR/J/ApJ/757/141
- Title:
- Companion IR detection limits in young associations
- Short Name:
- J/ApJ/757/141
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The frequency and properties of multiple star systems offer powerful tests of star formation models. Multiplicity surveys over the past decade have shown that binary properties vary strongly with mass, but the functional forms and the interplay between frequency and semimajor axis remain largely unconstrained. We present the results of a large-scale survey of multiplicity at the bottom of the initial mass function in several nearby young associations, encompassing 78 very low mass members observed with Keck laser guide star adaptive optics. Our survey confirms the overall trend observed in the field for lower-mass binary systems to be less frequent and more compact, including a null detection for any substellar binary systems with separations wider than ~7AU. Combined with a Bayesian re-analysis of existing surveys, our results demonstrate that the binary frequency and binary separations decline smoothly between masses of 0.5M_{sun}_ and 0.02M_{sun}_, though we cannot distinguish the functional form of this decline due to a degeneracy between the total binary frequency and the mean binary separation. We also show that the mass ratio distribution becomes progressively more concentrated at q~1 for declining masses, though a small number of systems appear to have unusually wide separations and low-mass ratios for their mass. Finally, we compare our results to synthetic binary populations generated by smoothed particle hydrodynamic simulations, noting the similarities and discussing possible explanations for the differences.