- ID:
- ivo://CDS.VizieR/J/AJ/161/87
- Title:
- Gaia data for members of {epsilon}Cha
- Short Name:
- J/AJ/161/87
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The precise parallax, proper motion, and photometric measurements contained in Gaia Data Release 2 (DR2) offer the opportunity to reexamine the membership and ages of nearby young moving groups (NYMGs), i.e., loose groups of stars of age <~100Myr in the solar vicinity. Here, we analyze the available DR2 data for members and candidate members of the {epsilon}Cha Association ({epsilon}CA) which, at an estimated age of ~3-5Myr, has previously been identified as among the youngest NYMGs. The several dozen confirmed members of {epsilon}CA include MPMus and TCha, two of the nearest stars of roughly solar mass that are known to host primordial protoplanetary disks, and the Herbig Ae/Be star HD104237A. We have used Gaia DR2 data to ascertain the Galactic positions and kinematics and color-magnitude diagram positions of {epsilon}CA members and candidates so as to reassess their membership status and thereby refine estimates of the distance, age, multiplicity, and disk fraction of the group. Our analysis yields 36 bona fide {epsilon}CA members, as well as 20 provisional members, including 3 new members identified here as comoving companions to previously known {epsilon}CA stars. We determine a mean distance to {epsilon}CA of 101.0{+/-}4.6pc and confirm that, at an age of 5_-2_^+3^Myr, {epsilon}CA represents the youngest stellar group within ~100pc of Earth. We identify several new photometric binary candidates, bringing the overall multiplicity fraction (MF) of {epsilon}CA to 40%, intermediate between the MFs of young T associations and the field.
Number of results to display per page
Search Results
1242. Gaia DR2
- ID:
- ivo://CDS.VizieR/I/345
- Title:
- Gaia DR2
- Short Name:
- I/345
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Gaia Data Release 2. Summary of the contents and survey properties: We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on as- trophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods. The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the G_BP_ (330-680nm) and G_RP_ (630-1050nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy. The catalogue of radial velocity standard stars (Soubiran et al., 2018A&A...616A...7S) The Radial Velocity Spectrometer (RVS) on board of Gaia having no calibration device, the zero point of radial velocities needs to be calibrated with stars proved to be stable at the level of 300m/s during the Gaia observations. A dataset of about 71000 ground-based radial velocity measurements from five high resolution spectrographs has been compiled. A catalogue of 4813 stars was built by combining these individual measurements. The zero point has been established using asteroids. The resulting catalogue has 7 observations per star on average on a typical time baseline of 6 years, with a median standard deviation of 15m/s. A subset of the most stable stars fulfilling the RVS requirements has been used to establish the zero point of the radial velocities provided in Gaia DR2. The stars not used for calibration are used for the RVS data validation.
1243. Gaia DR1
- ID:
- ivo://CDS.VizieR/I/337
- Title:
- Gaia DR1
- Short Name:
- I/337
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Gaia Data Release 1 (DR1) contains astrometric results for more than 1 billion stars brighter than magnitude 20.7 based on observations collected by the Gaia satellite during the first 14 months of its operational phase. For stars in common with the Hipparcos and Tycho-2 catalogues, complete astrometric single-star solutions are obtained by incorporating positional information from the earlier catalogues. For other stars only their positions are obtained, essentially by neglecting their proper motions and parallaxes. The results are validated by an analysis of the residuals, through special validation runs, and by comparison with external data. For about two million of the brighter stars (down to magnitude ~11.5) we obtain positions, parallaxes, and proper motions to Hipparcos- type precision or better. For these stars, systematic errors depending for example on position and colour are at a level of +/-0.3 milliarcsecond (mas). For the remaining stars we obtain positions at epoch J2015.0 accurate to ~10 mas. Positions and proper motions are given in a reference frame that is aligned with the International Celestial Reference Frame (ICRF) to better than 0.1mas at epoch J2015.0, and non-rotating with respect to ICRF to within 0.03mas/yr. The Hipparcos reference frame is found to rotate with respect to the Gaia DR1 frame at a rate of 0.24mas/yr.
- ID:
- ivo://CDS.VizieR/J/A+A/628/A81
- Title:
- Gaia DR2-based catalogue of 237 Ap stars
- Short Name:
- J/A+A/628/A81
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Knowing the distribution of strongly magnetic Ap stars in the Hertzsprung-Russell diagram (HRD) allows us to study the evolution of their magnetic fields across the main sequence (MS). With a newly extended Ap star sample from APOGEE and available Gaia DR2 data, we can now critically review the results of previous studies based on Hipparcos data. To investigate our targets in the Gaia DR2 HRD, we need to define astrometric and photometric quality criteria to remove unreliable data from the HRD. We used the Gaia DR2 renormalised unit weight error RUWE as our main quality criterion. We considered known (close) binaries in our sample compared to their (partly affected) astrometry and used the Gaia DR2 data to find common parallax and proper motion (CPPM) wide companions and open cluster members. We studied G, BP and RP variability amplitudes and their significance as a function of magnitude. In colour-magnitude diagrams (CMDs) with absolute G magnitude (determined from inverted parallax) versus BP-RP colour and HRDs, where BP-RP is replaced by effective temperature, we studied the appearance of outliers with respect to their astrometric quality, binarity, and variability. We present a catalogue of 83 previously known and 154 new strongly magnetic Ap stars with Gaia DR2 data, including astrometric quality parameters, binary flags, information on cluster membership, variability amplitudes, and data from Hipparcos. Our astrometrically cleaned subsamples include 47 and 46 old and new Ap stars with parallaxes >2mas. Most of the known 26 binaries among all 237 stars and 14 out of 15 CMD/HRD outliers were excluded by astrometric criteria. The remaining 11 known binaries and a few highly variable objects mainly appear in the bright and red CMD/HRD parts. A CMD based on Hipparcos photometry and Gaia DR2 parallaxes shows a much more narrow distribution in the absolute V magnitudes of 75 common Ap stars over the full B-V colour range than the corresponding CMD based on Hipparcos parallaxes.
- ID:
- ivo://CDS.VizieR/J/ApJ/889/99
- Title:
- Gaia DR2 Blanco 1 member candidates
- Short Name:
- J/ApJ/889/99
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the stellar population, using Gaia DR2 parallax, kinematics, and photometry, of the young (~100Myr), nearby (~230pc) open cluster, Blanco 1. A total of 644 member candidates are identified via the unsupervised machine learning method StarGO to find the clustering in the 5-dimensional position and proper motion parameter (X, Y, Z, {mu}{alpha}*cos{delta}, {mu}{delta}) space. Within the tidal radius of 10.0+/-0.3pc, there are 488 member candidates, 3 times more than those outside. A leading tail and a trailing tail, each of 50-60pc in the Galactic plane, are found for the first time for this cluster, with stars further from the cluster center streaming away faster, manifest stellar stripping. Blanco 1 has a total detected mass of 285+/-32M_{sun}_ with a mass function consistent with a slope of alpha=1.35+/-0.2 in the sense of dN/dm{prop.to}m^-alpha^, in the mass range of 0.25-2.51M_{sun}_, where N is the number of members and $m$ is stellar mass. A Minimum Spanning Tree ({LAMBDA}_MSR_) analysis shows the cluster to be moderately mass segregated among the most massive members (>~1.4M_{sun}_), suggesting an early stage of dynamical disintegration.
- ID:
- ivo://CDS.VizieR/J/A+A/630/A119
- Title:
- Gaia DR2 distances to two clusters
- Short Name:
- J/A+A/630/A119
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- On the one hand, the second data release of the Gaia mission (GaiaDR2, Cat. I/345) has opened a trove of astrometric and photometric data for Galactic clusters within a few kpc of the Sun. On the other hand, lucky imaging has been an operational technique to measure the relative positions of visual binary systems for a decade and a half, a time sufficient to apply its results to the calculation of orbits of some massive multiple systems within ~1kpc of the Sun. As part of an ambitious research program to measure distances to Galactic stellar groups (including clusters) containing O stars,I start with two of the nearest examples: Collinder 419 in Cygnus and NGC 2264 in Monoceros. The main ionizing source for both clusters is a multiple system with an O-type primary: HD 193322 and 15 Mon, respectively. For each of those two multiple systemsI aim to derive new astrometric orbits for the Aa,Ab components. First, I present a method that usesGaiaDR2 G+G_BP_+G_RP_ photometry, positions, proper motions, and parallaxes to obtain the membership and distance of a stellar group and apply it to Collinder 419 and NGC 2264. Second, I present a new code that calculates astrometric orbits by searching the whole seven-parameter orbit space and apply it to HD 193 322 Aa,Ab and 15 Mon Aa,Abusing as input literature data from the Washington Double Star Catalog (WDS) and the AstraLux measurements recently presented by Maiz Apellaniz et al. (2019, Cat. J/A+A/626/A20) I obtain GaiaDR2 distances of 1006^+37^_-34_pc for Collinder 419 and 719+/-16pc for NGC 2264, with the main contribution to the uncertainties coming from the spatial covariance of the parallaxes. The two NGC 2264 subclusters are at the same distance (within the uncertainties) and they show a significant relative proper motion. The distances are shown to be robust. HD 193322 Aa,Ab follows an eccentric (e=0.58^+0.03^_-0.04_) orbit with a period of 44+/-1 a and the three stars it contains have a total mass of 76.1^+9.9^_-7.4_M_{sun}_. The orbit of 15 Mon Aa,Ab is even more eccentric (e=0.770^+0.023^_-0.030_), with a period of 108+/-12 a and a total mass of 45.1^+3.6^_-3.3_M_{sun}_ for its two stars.
- ID:
- ivo://CDS.VizieR/J/MNRAS/502/L90
- Title:
- Gaia DR2 Galactic bulge new star clusters
- Short Name:
- J/MNRAS/502/L90
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of 34 new open clusters and candidates as a result of a systematic search carried out in 200 adjacent fields of 1x1 square degrees area projected towards the Galactic bulge, using Gaia DR2 data. The objects were identified and characterized by a joint analysis of their photometric, kinematic and spatial distribution, which has been consistently used and proved to be effective in our previous works. The discoveries were validated by cross-referencing the objects position and astrometric parameters with the available literature. Besides their coordinates and astrometric parameters, we also provide sizes, ages, distances and reddening for the discovered objects. In particular, 32 clusters are closer than 2kpc from the Sun, which represents an increment of nearly 39% of objects with astrophysical parameters determined in the nearby inner disk. Although these objects fill an important gap in the open clusters distribution along the Sagittarius arm, this arm, traced by known clusters, appears to be interrupted, which may be an artifact due to the incompleteness of the cluster census.
- ID:
- ivo://CDS.VizieR/J/MNRAS/465/2849
- Title:
- Gaia DR1 mass-radius relation of white dwarfs
- Short Name:
- J/MNRAS/465/2849
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Gaia Data Release 1 (DR1) sample of white dwarf parallaxes is presented, including six directly observed degenerates and 46 white dwarfs in wide binaries. This data set is combined with spectroscopic atmospheric parameters to study the white dwarf mass-radius relationship (MRR). Gaia parallaxes and G magnitudes are used to derive model atmosphere-dependent white dwarf radii, which can then be compared to the predictions of a theoretical MRR. We find a good agreement between Gaia DR1 parallaxes, published effective temperatures (T_eff_) and surface gravities (logg), and theoretical MRRs. As it was the case for Hipparcos, the precision of the data does not allow for the characterization of hydrogen envelope masses. The uncertainties on the spectroscopic atmospheric parameters are found to dominate the error budget and current error estimates for well-known and bright white dwarfs may be slightly optimistic. With the much larger Gaia DR2 white dwarf sample, it will be possible to explore the MRR over a much wider range of mass, T_eff_, and spectral types.
- ID:
- ivo://CDS.VizieR/J/MNRAS/489/3093
- Title:
- Gaia DR2 parallax of globular clusters
- Short Name:
- J/MNRAS/489/3093
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have established a mixture model approach to derive the parallax of the MilkyWay globular clusters. It avoids the problem of cluster membership determination and provides a completely independent astrometrical solution by purely using the parallax data. This method is validated with simulated clusters of Pancino et al.. We have resolved 120 real globular clusters by the mixture model using parallaxes of the second data release of Gaia. They construct the largest direct parallax sample up to now. In comparison with other direct parallax results based on cluster members, including 75 clusters of Gaia Collaboration, our method presents its accuracy, especially for some particular clusters. A systematic offset of -27.6+/-1.7 uas, together with a scatter of 22.8+/-1.3 uas is found in comparison with other indirect parallax measurements. They are consistent with the global value and the variation of the zero-point of current Gaia parallaxes. Distances of several specific nearby globular clusters are discussed while the closest ones can reach high precisions, even taking the systematic error into account.
- ID:
- ivo://CDS.VizieR/J/A+A/619/A180
- Title:
- Gaia DR2 photometric sensitivity curves
- Short Name:
- J/A+A/619/A180
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The second data release (DR2) from the European Space Agency mission Gaia took place on April 2018. DR2 included photometry for more than 1.3x10^9^ sources in the three bands G, G_BP_, and G_RP_. Even though the Gaia DR2 photometry is very precise, there are currently three alternative definitions of the sensitivity curves that show significative differences. The aim of this paper is to improve the quality of the input calibration data to produce new compatible definitions of the G, G_BP_, and G_RP_ bands and to identify the reasons for the discrepancies between previous definitions. We have searched the Hubble Space Telescope (HST) archive for Space Telescope Imaging Spectrograph (STIS) spectra with G430L+G750L data obtained with wide apertures and combined them with the CALSPEC library to produce a high quality spectral energy distribution (SED) library of 122 stars with a broad range of colors, including three very red stars. This library defines new sensitivity curves for G, G_BP_, and G_RP_ using a functional analytical formalism. The new sensitivity curves are significantly better than the two previous attempts we use as a reference, REV (Evans et al., 2018A&A...616A...4E, Cat. I/345) and WEI (Weiler, 2018A&A...617A.138W, Cat. J/A+A/617/A138). For G we confirm the existence of a systematic bias in magnitude and correct a color term present in REV. For G_BP_ we confirm the need to define two magnitude ranges with different sensitivity curves and measure the cut between them at G_phot_=10.87mag with a significant increase in precision. The new curves also fit the data better than either REV or WEI. For G_RP_, our new sensitivity curve fits the STIS spectra better and the differences with previous attempts reside in a systematic effect between ground-based and HST spectral libraries. Additional evidence from color-color diagrams indicate that the new sensitivity curve is more accurate. Nevertheless, there is still room for improvement in the accuracy of the sensitivity curves because of the current dearth of good-quality red calibrators: adding more to the sample should be a priority before Gaia data release 3 takes place.