- ID:
- ivo://CDS.VizieR/J/ApJ/863/89
- Title:
- Gaia DR2 PMs of stars in ultra-faint MW satellites
- Short Name:
- J/ApJ/863/89
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The second data release from the Gaia mission (DR2) provides a comprehensive and unprecedented picture of the motions of astronomical sources in the plane of the sky, extending from the solar neighborhood to the outer reaches of the Milky Way. I present proper-motion measurements based on Gaia DR2 for 17 ultra-faint dwarf galaxies within 100kpc of the Milky Way. I compile the spectroscopically confirmed member stars in each dwarf bright enough for Gaia astrometry from the literature, producing member samples ranging from two stars in Triangulum II to 68 stars in Bootes I. From the spectroscopic member catalogs, I estimate the proper motion of each system. I find good agreement with the proper motions derived by the Gaia collaboration for Bootes I and Leo I. The tangential velocities for 14 of the 17 dwarfs are determined to better than 50km/s, more than doubling the sample of such measurements for Milky Way satellite galaxies. The orbital pericenters are well constrained, with a mean value of 38kpc. Only one satellite, Tucana III, is on an orbit passing within 15kpc of the Galactic center, suggesting that the remaining ultra-faint dwarfs are unlikely to have experienced severe tidal stripping. As a group, the ultra-faint dwarfs are on high-velocity, eccentric, retrograde trajectories, with nearly all of them having space motions exceeding 370km/s. A large majority of the objects are currently close to the pericenters of their orbits. In a low-mass (M_vir_=0.9x10^12^M_{sun}_) Milky Way potential, eight out of the 17 galaxies lack well-defined apocenters and appear likely to be on their first infall, indicating that the Milky Way mass may be larger than previously estimated or that many of the ultra-faint dwarfs are associated with the Magellanic Clouds. The median eccentricity of the ultra-faint dwarf orbits is 0.79, similar to the values seen in numerical simulations but distinct from the rounder orbits of the more luminous dwarf spheroidals.
Number of results to display per page
Search Results
1252. Gaia DR1 QSO magnitude
- ID:
- ivo://CDS.VizieR/J/A+A/611/A52
- Title:
- Gaia DR1 QSO magnitude
- Short Name:
- J/A+A/611/A52
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The first release of the Gaia catalog is available since 14 September 2016. It is a first step in the realization of the future Gaia reference frame. This reference frame will be materialized by the optical positions of the sources and will be compared with and linked to the International Celestial Reference Frame, materialized by the radio position of extragalactic sources. As in the radio domain, it can be reasonably postulated that quasar optical flux variations can alert us to potential changes in the source structure. These changes could have important implications for the position of the target photocenters (together with the evolution in time of these centers) and in parallel have consequences for the link of the reference systems. A set of nine optical telescopes was used to monitor the magnitude variations, often at the same time as Gaia, thanks to the Gaia Observation Forecast Tool. The Allan variances, which are statistical tools widely used in the atomic time and frequency community, are introduced.
- ID:
- ivo://CDS.VizieR/J/AJ/160/138
- Title:
- 68 Gaia DR2 ultra-short-period planet host stars
- Short Name:
- J/AJ/160/138
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- It has been unambiguously shown both in individual systems and at the population level that hot Jupiters experience tidal inspiral before the end of their host stars main-sequence lifetimes. Ultra-short-period (USP) planets have orbital periods P<1 day, rocky compositions, and are expected to experience tidal decay on similar timescales to hot Jupiters if the efficiency of tidal dissipation inside their host stars parameterized as Q_*_' is independent of P and/or secondary mass M_p_. Any difference between the two classes of systems would reveal that a model with constant Q_*_' is insufficient. If USP planets experience tidal inspiral, then USP planet systems will be relatively young compared to similar stars without USP planets. Because it is a proxy for relative age, we calculate the Galactic velocity dispersions of USP planet candidate host and non-host stars using data from Gaia Data Release 2 supplemented with ground-based radial velocities. We find that main-sequence USP planet candidate host stars have kinematics consistent with similar stars in the Kepler field without observed USP planets. This indicates that USP planet hosts have similar ages to field stars and that USP planets do not experience tidal inspiral during the main-sequence lifetimes of their host stars. The survival of USP planets requires that Q_*_'>~10^7^ at P~0.7day and M_p_~2.6M{Earth}. This result demands that Q_*_' depend on the orbital period and/or mass of the secondary in the range 0.5day<~P<~5days and 1M{Earth}<~M_p_<~1000M{sun}.
- ID:
- ivo://CDS.VizieR/J/MNRAS/482/4570
- Title:
- Gaia DR2 white dwarf candidates
- Short Name:
- J/MNRAS/482/4570
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalogue of white dwarf candidates selected from the second data release of Gaia (DR2). We used a sample of spectroscopically confirmed white dwarfs from the Sloan Digital Sky Survey (SDSS) to map the entire space spanned by these objects in the Gaia Hertzsprung-Russell diagram. We then defined a set of cuts in absolute magnitude, colour, and a number of Gaia quality flags to remove the majority of contaminating objects. Finally, we adopt a method analogous to the one presented in our earlier SDSS photometric catalogues to calculate a probability of being a white dwarf (PWD) for all Gaia sources which passed the initial selection. The final catalogue is composed of 486641 stars with calculated PWD from which it is possible to select a sample of~260000 high-confidence white dwarf candidates in the magnitude range 8<G<21. By comparing this catalogue with a sample of SDSS white dwarf candidates we estimate an upper limit in completeness of 85 per cent for white dwarfs with G<=20mag and Teff>7000K, at high Galactic latitudes (|b|>20deg). However, the completeness drops at low Galactic latitudes, and the magnitude limit of the catalogue varies significantly across the sky as a function of Gaia's scanning law. We also provide the list of objects within our sample with available SDSS spectroscopy.
- ID:
- ivo://CDS.VizieR/J/ApJ/899/83
- Title:
- 723 Gaia DR2 White dwarfs cand. in Local Galactic Halo
- Short Name:
- J/ApJ/899/83
- Date:
- 14 Mar 2022 08:58:44
- Publisher:
- CDS
- Description:
- We present a catalog of 531 white dwarf candidates that have large apparent transverse motions relative to the Sun (v_T_>200km/s), thus making them likely members of the local Galactic halo population. The candidates were selected from the Gaia Data Release 2 and are located in a great circle with 20{deg} width running across both Galactic poles and the Galactic center and anticenter, a zone that spans 17.3% of the sky. The selection used a combination of kinematic and photometric properties, derived primarily from Gaia proper motions, G magnitudes, and G_BP_-G_RP_ color, and including parallax whenever available. Additional validation of the white dwarf candidates is made using PanSTARRS photometric (gri) data. Our final catalog includes not only stars having full kinematic and luminosity estimates from reliable Gaia parallax, but also stars with presently unreliable or no available Gaia parallax measurements. We argue that our method of selecting local halo objects with and without reliable parallax data leads us to round up all possible halo white dwarfs in the Gaia catalog (in that particular section of the sky) with recorded proper motions >40mas/yr and that pass our v_T_>200km/s threshold requirement. We expect this catalog will be useful for the study of the white dwarf population of the local Galactic halo.
- ID:
- ivo://CDS.VizieR/II/360
- Title:
- Gaia DR2 x AllWISE catalogue
- Short Name:
- II/360
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The second Gaia Data Release (DR2) contains astrometric and photometric data for more than 1.6 billion objects with mean Gaia G magnitude <20.7, including many Young Stellar Objects (YSOs) in different evolutionary stages. In order to explore the YSO population of the Milky Way, we combined the Gaia DR2 database with WISE and Planck measurements and made an all-sky probabilistic catalogue of YSOs using machine learning techniques, such as Support Vector Machines, Random Forests, or Neural Networks. Our input catalogue contains 103 million objects from the DR2xAllWISE cross-match table. We classified each object into four main classes: YSOs, extragalactic objects, main-sequence stars and evolved stars. At a 90% prob- ability threshold we identified 1 129 295 YSO candidates. To demonstrate the quality and potential of our YSO catalogue, here we present two applications of it. (1) We explore the 3D structure of the Orion A star forming complex and show that the spatial distribution of the YSOs classified by our procedure is in agreement with recent results from the literature. (2) We use our catalogue to classify published Gaia Science Alerts. As Gaia measures the sources at multiple epochs, it can efficiently discover transient events, including sudden brightness changes of YSOs caused by dynamic processes of their circumstellar disk. However, in many cases the physical nature of the published alert sources are not known. A cross-check with our new catalogue shows that about 30% more of the published Gaia alerts can most likely be attributed to YSO activity. The catalogue can be also useful to identify YSOs among future Gaia alerts.
- ID:
- ivo://CDS.VizieR/J/A+A/649/A3
- Title:
- Gaia Early Data Release 3 photometric passbands
- Short Name:
- J/A+A/649/A3
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Gaia Early Data Release 3 (Gaia EDR3) contains astrometry and photometry results for about 1.8 billion sources based on observations collected by the European Space Agency Gaia satellite during the first 34 months of its operational phase. In this paper, we focus on the photometric content, describing the input data, the algorithms, the processing, and the validation of the results. Particular attention is given to the quality of the data and to a number of features that users may need to take into account to make the best use of the Gaia EDR3 catalogue. The processing broadly followed the same procedure as for Gaia DR2, but with significant improvements in several aspects of the blue and red photometer (BP and RP) preprocessing and in the photometric calibration process. In particular, the treatment of the BP and RP background has been updated to include a better estimation of the local background, and the detection of crowding effects has been used to exclude affected data from the calibrations. The photometric calibration models have also been updated to account for flux loss over the whole magnitude range. Significant improvements in the modelling and calibration of the Gaia point and line spread functions have also helped to reduce a number of instrumental effects that were still present in DR2. Gaia EDR3 contains 1.806 billion sources with G-band photometry and 1.540 billion sources with GBP and GRP photometry. The median uncertainty in the G-band photometry, as measured from the standard deviation of the internally calibrated mean photometry for a given source, is 0.2mmag at magnitude G=10 to 14, 0.8mmag at G~17, and 2.6mmag at G~19. The significant magnitude term found in the Gaia DR2 photometry is no longer visible, and overall there are no trends larger than 1mmag/mag. Using one passband over the whole colour and magnitude range leaves no systematics above the 1% level in magnitude in any of the bands, and a larger systematic is present for a very small sample of bright and blue sources. A detailed description of the residual systematic effects is provided. Overall the quality of the calibrated mean photometry in Gaia EDR3 is superior with respect to DR2 for all bands.
1258. Gaia EDR3
- ID:
- ivo://CDS.VizieR/I/350
- Title:
- Gaia EDR3
- Short Name:
- I/350
- Date:
- 18 Jan 2022 09:31:17
- Publisher:
- CDS
- Description:
- Gaia DR3 data (both Gaia EDR3 and the full Gaia DR3) are based on data collected between 25 July 2014 (10:30 UTC) and 28 May 2017 (08:44 UTC), spanning a period of 34 months. As a comparison, Gaia DR2 was based on 22 months of data and Gaia DR1 was based on observations collected during the first 14 months of Gaia's routine operational phase. Survey completeness: The Gaia EDR3 catalogue is essentially complete between G=12 and G=17. The source list for the release is incomplete at the bright end and has an ill-defined faint magnitude limit, which depends on celestial position. The combination of the Gaia scan law coverage and the filtering on data quality which will be done prior to the publication of Gaia EDR3, does lead to some regions of the sky displaying source density fluctuations that reflect the scan law pattern. In addition, small gaps exist in the source distribution, for instance close to bright stars. Astrometry: The parallax improvement is typically 20% with respect to Gaia DR2. The proper motions are typically a factor two better than in Gaia DR2. An overall reduction of systematics has been achieved. E.g., the parallax zero point deduced from the extragalactic sources is about -20{mu}as. A tentative correction formula for the parallax zero point will be provided. Closer to the release date of Gaia Early Data Release 3, an update will be given on the astrometry. Photometry: The G-band photometric uncertainties are ~0.25mmag for G<13, 1mmag at G=17, and 5mmag at G=20mag. The GBP-band photometric uncertainties are ~1mmag for G<13, 10mmag at G=17, and 100mmag at G=20mag. The GRP-band photometric uncertainties are ~1mmag for G<13, 5mmag at G=17, and 50mmag at G=20mag. Closer to the release date of Gaia Early Data Release 3, an update will be given on the photometry. Gaia EDR3 does not contain new radial velocities. The radial velocities of Gaia Data Release 2 have been added to Gaia EDR3 in order to ease the combination of spectrosopic and astrometric data. Radial velocities: Gaia EDR3 hence contains Gaia DR2 median radial velocities for about 7.21 million stars with a mean G magnitude between ~4 and ~13 and an effective temperature (Teff) in the range ~3550 to 6900K. The overall precision of the radial velocities at the bright end is of the order of ~200-300m/s while at the faint end, the overall precision is ~1.2km/s for a Teff of 4750K and ~3.5km/s for a Teff of 6500K. Before publication in Gaia EDR3, an additional filtering has been performed onto the Gaia DR2 radial velocities to remove some 4000 sources that had wrong radial velocities. Please be aware that the Gaia DR2 values are assigned to the Gaia EDR3 sources through an internal cross-match operation. In total, ~10000 Gaia DR2 radial velocities could not be associated to a Gaia EDR3 source. Astrophysical parameters: Gaia EDR3 does not contain new astrophysical parameters. Astrophysical parameters have been published in Gaia DR2 and a new set is expected to be released with the full Gaia DR3 release. Variable stars: Gaia EDR3 does not contain newly classified variable stars. For the overview of the currently available variable stars from Gaia DR2, have a look here. Classifications for a larger set of variable stars are expected with the full Gaia DR3 release. Solar system objects: A large set of solar system objects with orbits will become available with the full Gaia DR3 release. Information on the currently available asteroids in Gaia DR2 can be found here. Documentation: Data release documentation is provided along with each data release in the form of a downloadable PDF and a webpage. The various chapters of the documentation have been indexed at ADS allowing them to be cited. Please visit the Gaia Archive (https://gea.esac.esa.int/archive) to access this documentation, and make sure to check out all relevant information given through the documentation overview page (https://www.cosmos.esa.int/web/gaia-users/archive).
- ID:
- ivo://CDS.VizieR/J/AJ/162/110
- Title:
- Gaia EDR3 census of the Taurus-Auriga complex
- Short Name:
- J/AJ/162/110
- Date:
- 14 Mar 2022 06:44:20
- Publisher:
- CDS
- Description:
- The Taurus-Auriga complex is the prototypical low-mass star-forming region, and provides a unique testbed of the star formation process, which left observable imprints on the spatial, kinematic, and temporal structure of its stellar population. Taurus's rich observational history has uncovered peculiarities that suggest a complicated star-forming event, such as members at large distances from the molecular clouds and evidence of an age spread. With Gaia, an in-depth study of the Taurus census is possible, to confirm membership, identify substructure, and reconstruct its star formation history. We have compiled an expansive census of the greater Taurus region, identifying spatial subgroups and confirming that Taurus is substructured across stellar density. There are two populations of subgroups: clustered groups near the clouds and sparse groups spread throughout the region. The sparse groups comprise Taurus's distributed population, which is on average older than the population near the clouds, and hosts subpopulations up to 15Myr old. The ages of the clustered groups increase with distance, suggesting that the current star formation was triggered from behind. Still, the region is kinematically coherent, and its velocity structure reflects an initial turbulent spectrum similar to Larson's Law that has been modified by dynamical relaxation. Overall, Taurus has a complicated star formation history, with at least two epochs of star formation featuring both clustered and distributed modes. Given the correlations between age and spatial distribution, Taurus might be part of a galaxy-scale star-forming event that can only begin to be understood in the Gaia era.
- ID:
- ivo://CDS.VizieR/J/A+A/656/A110
- Title:
- Gaia EDR3 planetary nebula central star distances
- Short Name:
- J/A+A/656/A110
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Planetary nebulae (PNe) are a brief but important phase of stellar evolution. The study of Galactic PNe has historically been hampered by uncertain distances, but the parallaxes of PN central stars (CSPNe) measured by Gaia are improving the situation. Gaia's Early Data Release 3 (EDR3) offers higher astrometric precision and greater completeness compared to previous releases. Taking advantage of these improvements requires that the CSPNe in the catalogue be accurately identified. We applied our automated technique based on the likelihood ratio method to cross-match known PNe with sources in Gaia EDR3, using an empirically derived position and colour distribution to score candidate matches. We present a catalogue of over 2000 sources in Gaia EDR3 that our method has identified as likely CSPNe or compact nebula detections. We show how the more precise parallaxes of these sources compare to previous PN statistical distances and introduce an approach to combining them to produce tighter distance constraints. We also discuss Gaia's handling of close companions and bright nebulae. Gaia is unlocking new avenues for the study of PNe. The catalogue presented here will remain valid for the upcoming Gaia Data Release 3 (DR3) and thus provide a valuable resource for years to come.