- ID:
- ivo://CDS.VizieR/J/A+A/520/A109
- Title:
- Gas kinematics of spiral galaxies
- Short Name:
- J/A+A/520/A109
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We trace the interaction processes of galaxies at intermediate redshift by measuring the irregularity of their ionized gas kinematics, and investigate these irregularities as a function of the environment (cluster versus field) and of morphological type (spiral versus irregular). We obtain the gas velocity fields by placing three parallel and adjacent VLT/FORS2 slits on each galaxy. To quantify irregularities in the gas kinematics, we use three indicators: the standard deviation of the kinematic position angle ({sigma}_PA_), the mean deviation of the line of sight velocity profile from the cosine form which is measured using high order Fourier terms (k_3,5_/k_1_) and the average misalignment between the kinematical and photometric major axes ({Delta}{phi}). These indicators are then examined together with some photometric and structural parameters (measured from HST and FORS2 images in the optical) such as the disk scale length, rest-frame colors, asymmetry, concentration, Gini coefficient and M20 . Our sample consists of 92 distant galaxies. 16 cluster (z~0.3 and z~0.5) and 29 field galaxies (0.10<=z<=0.91, mean z=0.44) of these have velocity fields with sufficient signal to be analyzed. To compare our sample with the local universe, we also analyze a sample from the SINGS survey.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/887/80
- Title:
- Gas phase oxygen abundances for HII regions
- Short Name:
- J/ApJ/887/80
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The distribution of metals within a galaxy traces the baryon cycle and the buildup of galactic disks, but the detailed gas phase metallicity distribution remains poorly sampled. We have determined the gas phase oxygen abundances for 7138 HII regions across the disks of eight nearby galaxies using Very Large Telescope/Multi Unit Spectroscopic Explorer (MUSE) optical integral field spectroscopy as part of the PHANGS-MUSE survey. After removing the first-order radial gradients present in each galaxy, we look at the statistics of the metallicity offset ({Delta}O/H) and explore azimuthal variations. Across each galaxy, we find low ({sigma}=0.03-0.05dex) scatter at any given radius, indicative of efficient mixing. We compare physical parameters for those HII regions that are 1{sigma} outliers toward both enhanced and reduced abundances. Regions with enhanced abundances have high ionization parameter, higher H{alpha} luminosity, lower H{alpha} velocity dispersion, younger star clusters, and associated molecular gas clouds showing higher molecular gas densities. This indicates recent star formation has locally enriched the material. Regions with reduced abundances show increased H{alpha} velocity dispersions, suggestive of mixing introducing more pristine material. We observe subtle azimuthal variations in half of the sample, but cannot always cleanly associate this with the spiral pattern. Regions with enhanced and reduced abundances are found distributed throughout the disk, and in half of our galaxies we can identify subsections of spiral arms with clearly associated metallicity gradients. This suggests spiral arms play a role in organizing and mixing the interstellar medium.
- ID:
- ivo://CDS.VizieR/J/ApJ/899/13
- Title:
- GASP. XXI. Star forming rate in 54 galaxies
- Short Name:
- J/ApJ/899/13
- Date:
- 15 Mar 2022 08:27:30
- Publisher:
- CDS
- Description:
- Using MUSE observations from the GASP survey, we study 54 galaxies undergoing ram pressure stripping (RPS) and spanning a wide range in galaxy mass and host cluster mass. We use this rich sample to study how the star formation rate (SFR) in the tails of stripped gas depends on the properties of the galaxy and its host cluster. We show that the interplay between all the parameters involved is complex and that there is not a single, dominant one in shaping the observed amount of SFR. Hence, we develop a simple analytical approach to describe the mass fraction of stripped gas and the SFR in the tail, as a function of the cluster velocity dispersion, galaxy stellar mass, clustercentric distance, and speed in the intracluster medium. Our model provides a good description of the observed gas truncation radius and of the fraction of SFR observed in the stripped tails, once we take into account the fact that the star formation efficiency in the tails is a factor of ~5 lower than in the galaxy disk, in agreement with GASP ongoing HI and CO observations. Finally, we estimate the contribution of RPS to the intracluster light (ICL) and find that the average SFR in the tails of ram pressure stripped gas is ~0.22M{odot}/yr per cluster. By extrapolating this result to evaluate the contribution to the ICL at different epochs, we compute an integrated average value per cluster of ~4x109M{sun} of stars formed in the tails of RPS galaxies since z~1.
- ID:
- ivo://CDS.VizieR/J/ApJ/895/106
- Title:
- GAs Stripping Phenomena in galaxies with MUSE
- Short Name:
- J/ApJ/895/106
- Date:
- 15 Mar 2022 07:48:07
- Publisher:
- CDS
- Description:
- Exploiting the data from the GAs Stripping Phenomena in galaxies with MUSE (GASP) survey, we study the gas-phase metallicity scaling relations of a sample of 29 cluster galaxies undergoing ram pressure stripping and of a reference sample of (16 cluster and 16 field) galaxies with no significant signs of gas disturbance. We adopt the pyqz code to infer the mean gas metallicity at the effective radius and achieve a well-defined mass-metallicity relation (MZR) in the stellar mass range 10^9.25^<=M_*_<=10^11.5^M{odot} with a scatter of 0.12dex. At any given mass, reference cluster and stripping galaxies have similar metallicities, while the field galaxies with M_*_<1010.25M{sun} show on average lower gas metallicity than galaxies in clusters. Our results indicate that at the effective radius, the chemical properties of the stripping galaxies are independent of the ram pressure stripping mechanism. Nonetheless, at the lowest masses, we detect four stripping galaxies well above the common MZR that suggest a more complex scenario. Overall, we find signs of an anticorrelation between the metallicity and both the star formation rate and the galaxy size, in agreement with previous studies. No significant trends are instead found with the halo mass, clustercentric distance, and local galaxy density in clusters. In conclusion, we advise a more detailed analysis of the spatially resolved gas metallicity maps of the galaxies, able to highlight effects of gas redistribution inside the disk due to ram pressure stripping.
- ID:
- ivo://CDS.VizieR/J/ApJ/897/89
- Title:
- 1482 Gaussian clumps in the Central Molecular Zone
- Short Name:
- J/ApJ/897/89
- Date:
- 11 Mar 2022
- Publisher:
- CDS
- Description:
- We carry out a systematic study of the density structure of gas in the Central Molecular Zone (CMZ) in the Galactic center by extracting clumps from the APEX Telescope Large Area Survey of the Galaxy survey at 870{mu}m. We find that the clumps follow a scaling of m={rho}_0_r^3^, which corresponds to a characteristic density of n_H_2__=1.6x10^3^/cm^3^ ({rho}_0_=112M{sun}/pc^3^) with a variation of ~0.5dex, where we assumed a gas-to-dust mass ratio of 100. This characteristic density can be interpreted as the result of thermal pressure equilibrium between the molecular gas and the warm ambient interstellar medium. Such an equilibrium can plausibly be established since shear has approximately the same strength as self-gravity. Our findings may explain the fact that star formation in the CMZ is highly inefficient compared to the rest of the Milky Way disk. We also identify a population of clumps whose densities are two orders of magnitudes higher in the vicinity of the Sgr B2 region, which we propose are produced by collisions between the clumps of lower densities. For these collisions to occur, processes such as compressive tides probably have created the appropriate condition by assembling the clumps together.
- ID:
- ivo://CDS.VizieR/J/ApJ/902/39
- Title:
- GBT HI obs. of ultradiffuse galaxies
- Short Name:
- J/ApJ/902/39
- Date:
- 10 Mar 2022 13:55:53
- Publisher:
- CDS
- Description:
- We present neutral hydrogen (HI) observations using the Robert C. Byrd Green Bank Telescope (GBT) of 70 optically detected UDG candidates in the Coma region from the Systematically Measuring Ultra-Diffuse Galaxies survey (SMUDGes). We detect HI in 18 targets, confirming nine to be gas-rich UDGs and the remainder to be foreground dwarfs. None of our HI-detected UDGs are Coma Cluster members and all but one are in low-density environments. The HI-detected UDGs are bluer and have more irregular morphologies than the redder, smoother candidates not detected in HI, with the combination of optical color and morphology being a better predictor of gas richness than either parameter alone. There is little visual difference between the gas-rich UDGs and the foreground dwarfs in the SMUDGes imaging, and distances are needed to distinguish between them. We find that the gas richnesses of our HI-confirmed UDGs and those from other samples scale with their effective radii in two stellar mass bins, possibly providing clues to their formation. We attempt to place our UDGs on the baryonic Tully-Fisher relation (BTFR) using optical ellipticities and turbulence-corrected HI line widths to estimate rotation velocities, but the potential systematics associated with fitting smooth Sersic profiles to clumpy, low-inclination disks of low surface brightness precludes a meaningful analysis of potential BTFR offsets. These observations are a pilot for a large campaign now under way at the GBT to use the HI properties of gas-rich UDGs to quantitatively constrain how these galaxies form and evolve.
- ID:
- ivo://CDS.VizieR/J/ApJ/894/111
- Title:
- Gemini/GMOS-S spectra of the type IIn SN 2010jl
- Short Name:
- J/ApJ/894/111
- Date:
- 19 Jan 2022 13:05:54
- Publisher:
- CDS
- Description:
- The luminous Type IIn SN 2010jl shows strong signs of interaction between the SN ejecta and dense circumstellar material. Dust may be present in the unshocked ejecta; the cool, dense shell (CDS) between the shocks in the interaction region; or in the circumstellar medium (CSM). We present and model new optical and infrared photometry and spectroscopy of SN 2010jl from 82 to 1367 days since explosion. We evaluate the photometric and spectroscopic evolution using the radiative transfer codes MOCASSIN and DAMOCLES, respectively. We propose an interaction scenario and investigate the resulting dust formation scenarios and dust masses. We find that SN 2010jl has been continuously forming dust based on the evolution of its infrared emission and optical spectra. There is evidence for preexisting dust in the CSM as well as new dust formation in the CDS and/or ejecta. We estimate that 0.005-0.01M_{sun}_ of predominantly carbon dust grains has formed in SN 2010jl by ~1400 days post-outburst.
- ID:
- ivo://CDS.VizieR/J/AJ/156/224
- Title:
- Gemini/HST GCP: galaxies in 4 massive clusters
- Short Name:
- J/AJ/156/224
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In order to study stellar populations and galaxy structures at intermediate and high redshift (z=0.2-2.0) and link these properties to those of low-redshift galaxies, there is a need for well-defined local reference samples. Especially for galaxies in massive clusters, such samples are often limited to the Coma cluster galaxies. We present consistently calibrated velocity dispersions and absorption-line indices for galaxies in the central 2 R_500_x2 R_500_ of four massive clusters at z<0.1: Abell 426/Perseus, Abell 1656/Coma, Abell 2029, and Abell 2142. The measurements are based on data from the Gemini Observatory, McDonald Observatory, and Sloan Digital Sky Survey. For bulge-dominated galaxies, the samples are 95% complete in Perseus and Coma and 74% complete in A2029 and A2142, to a limit of M_B,abs_=<-18.5 mag. The data serve as the local reference for our studies of galaxy populations in the higher-redshift clusters that are part of the Gemini/HST Galaxy Cluster Project (GCP). We establish the scaling relations between line indices and velocity dispersions as a reference for the GCP. We derive stellar population parameters, ages, metallicities [M/H], and abundance ratios from line indices, both averaged in bins of velocity dispersion and from individual measurements for galaxies in Perseus and Coma. The zero points of relations between the stellar population parameters and the velocity dispersions limit the allowed cluster-to-cluster variation of the four clusters to +/-0.08 dex in age, +/-0.06 dex in [M/H], +/-0.07 dex in [CN/Fe], and +/-0.03 dex in [Mg/Fe].
- ID:
- ivo://CDS.VizieR/V/117A
- Title:
- Geneva-Copenhagen Survey of Solar neighbourhood
- Short Name:
- V/117A
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- (from paper II, 2007) Ages, metallicities, space velocities, and Galactic orbits of stars in the Solar neighbourhood are fundamental observational constraints on models of galactic disk evolution. Understanding and minimising systematic errors and sample selection biases in the data is crucial for their interpretation. We aim to consolidate the calibrations of uvbyb photometry into T_eff_, [Fe/H], distance, and age for F and G stars and rediscuss the results of the Geneva-Copenhagen Survey (GCS, Nordstrom et al., 2004, paper I) in terms of the evolution of the disk. We use recent V-K photometry, angular diameters, high-resolution spectroscopy, Hipparcos parallaxes, and extensive numerical simulations to re-examine and verify the temperature, metallicity, distance, and reddening calibrations for the uvbyb system. We also highlight the selection effects inherent in the apparent-magnitude limited GCS sample. We substantially improve the T_eff_ and [Fe/H] calibrations for early F stars, where spectroscopic temperatures have large systematic errors. A slight offset of the GCS photometry and the non-standard helium abundance of the Hyades invalidate its use for checking metallicity or age scales; however, the distances, reddenings, metallicities, and age scale for GCS field stars require minor corrections only. Our recomputed ages are in excellent agreement with the independent determinations by Takeda et al. (2007ApJS..168..297T), indicating that isochrone ages can now be reliably determined. The revised G-dwarf metallicity distribution remains incompatible with closed-box models, and the age-metallicity relation for the thin disk remains almost flat, with large and real scatter at all ages sigma_intrinsic=0.20 dex). Dynamical heating of the thin disk continues throughout its life; specific in-plane dynamical effects dominate the evolution of the U and V velocities, while the W velocities remain random at all ages. When assigning thick and thin-disk membership for stars from kinematic criteria, parameters for the oldest stars should be used to characterise the thin disk.
- ID:
- ivo://CDS.VizieR/V/130
- Title:
- Geneva-Copenhagen Survey of Solar neighbourhood III
- Short Name:
- V/130
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Ages, chemical compositions, velocity vectors, and Galactic orbits for stars in the solar neighbourhood are fundamental test data for models of Galactic evolution. The Geneva-Copenhagen Survey of the Solar neighbourhood (Nordstrom et al. 2004A&A...418..989N; GCS), a magnitude-complete, kinematically unbiased sample of 16,682 nearby F and G dwarfs, is the largest available sample with complete data for stars with ages spanning that of the disk. We aim to improve the accuracy of the GCS data by implementing the recent revision of the Hipparcos parallaxes. The new parallaxes yield improved astrometric distances for 12,506 stars in the GCS. We also use the parallaxes to verify the distance calibration for uvbyHbeta photometry by Holmberg et al. (2007A&A...475..519H; GCS II, Cat. VI/117). We add new selection criteria to exclude evolved cool stars giving unreliable results and derive distances for 3,580 stars with large parallax errors or not observed by Hipparcos. We also check the GCS II scales of T_eff_ and [Fe/H] and find no need for change. From the new distances we compute revised Mv, U, V, W, and Galactic orbital parameters for 13,520 GCS stars. We also recompute stellar ages with the new values of Mv from the Padova stellar evolution models used in GCS I-II, and compare them with ages from the Yale-Yonsei and Victoria-Regina models. Finally, we compare the observed age-velocity relation in W with three simulated disk heating scenarios to show the potential of the data. With these revisions, the basic data for the GCS stars should now be as reliable as is possible with existing techniques. Further improvement must await consolidation of the T_eff_ scale from angular diameters and fluxes, and the Gaia trigonometric parallaxes. We discuss the conditions for improving computed stellar ages from new input data, and for distinguishing different disk heating scenarios from data sets of the size and precision of the GCS.