- ID:
- ivo://CDS.VizieR/J/AJ/151/7
- Title:
- Globular and open clusters observed by SDSS/SEGUE
- Short Name:
- J/AJ/151/7
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present griz observations for the clusters M92, M13 and NGC 6791 and gr photometry for M71, Be 29 and NGC 7789. In addition we present new membership identifications for all these clusters, which have been observed spectroscopically as calibrators for the Sloan Digital Sky Survey (SDSS)/SEGUE survey; this paper focuses in particular on the red giant branch stars in the clusters. In a number of cases, these giants were too bright to be observed in the normal SDSS survey operations, and we describe the procedure used to obtain spectra for these stars. For M71, we also present a new variable reddening map and a new fiducial for the gr giant branch. For NGC 7789, we derived a transformation from T_eff_ to g-r for giants of near solar abundance, using IRFM T_eff_ measures of stars with good ugriz and 2MASS photometry and SEGUE spectra. The result of our analysis is a robust list of known cluster members with correctly dereddened and (if needed) transformed gr photometry for crucial calibration efforts for SDSS and SEGUE.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/148/32
- Title:
- Globular cluster candidates in NGC 3115
- Short Name:
- J/AJ/148/32
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) g and z photometry and half-light radii R_h_ measurements of 360 globular cluster (GC) candidates around the nearby S0 galaxy NGC 3115. We also include Subaru/Suprime-Cam g, r, and i photometry of 421 additional candidates. The well-established color bimodality of the GC system is obvious in the HST/ACS photometry. We find evidence for a "blue tilt" in the blue GC subpopulation, wherein the GCs in the blue subpopulation get redder as luminosity increases, indicative of a mass-metallicity relationship. We find a color gradient in both the red and blue subpopulations, with each group of clusters becoming bluer at larger distances from NGC 3115. The gradient is of similar strength in both subpopulations, but is monotonic and more significant for the blue clusters. On average, the blue clusters have ~10% larger R_h_than the red clusters. This average difference is less than is typically observed for early-type galaxies but does match that measured in the literature for the Sombrero Galaxy (M104), suggesting that morphology and inclination may affect the measured size difference between the red and blue clusters. However, the scatter on the R_h_ measurements is large. We also identify 31 clusters more extended than typical GCs, which we term ultra-compact dwarf (UCD) candidates. Many of these objects are actually considerably fainter than typical UCDs. While it is likely that a significant number will be background contaminants, six of these UCD candidates are spectroscopically confirmed as NGC 3115 members. To explore the prevalence of low-mass X-ray binaries in the GC system, we match our ACS and Suprime-Cam detections to corresponding Chandra X-ray sources. We identify 45 X-ray-GC matches: 16 among the blue subpopulation and 29 among the red subpopulation. These X-ray/GC coincidence fractions are larger than is typical for most GC systems, probably due to the increased depth of the X-ray data compared to previous studies of GC systems.
- ID:
- ivo://CDS.VizieR/J/ApJ/835/184
- Title:
- Globular cluster candidates in NGC4258
- Short Name:
- J/ApJ/835/184
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We aim to explore the relationship between globular cluster total number, N_GC_, and central black hole mass, M_*_, in spiral galaxies, and compare it with that recently reported for ellipticals. We present results for the Sbc galaxy NGC 4258, from Canada-France-Hawaii Telescope data. Thanks to water masers with Keplerian rotation in a circumnuclear disk, NGC 4258 has the most precisely measured extragalactic distance and supermassive black hole mass to date. The globular cluster (GC) candidate selection is based on the (u*-i') versus (i'-Ks) diagram, which is a superb tool to distinguish GCs from foreground stars, background galaxies, and young stellar clusters, and hence can provide the best number counts of GCs from photometry alone, virtually free of contamination, even if the Galaxy is not completely edge-on. The mean optical and optical-near-infrared colors of the clusters are consistent with those of the Milky Way and M 31, after extinction is taken into account. We directly identify 39 GC candidates; after completeness correction, GC luminosity function extrapolation, and correction for spatial coverage, we calculate a total N_GC_=144+/-31_-36_^+38^ (random and systematic uncertainties, respectively). We have thus increased to six the sample of spiral galaxies with measurements of both M_*_ and N_GC_. NGC 4258 has a specific frequency S_N_=0.4+/-0.1 (random uncertainty), and is consistent within 2{sigma} with the N_GC_ versus M_*_ correlation followed by elliptical galaxies. The Milky Way continues to be the only spiral that deviates significantly from the relation.
- ID:
- ivo://CDS.VizieR/J/A+A/611/A21
- Title:
- Globular cluster candidates in NGC253
- Short Name:
- J/A+A/611/A21
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Globular clusters (GCs) are key to our understanding of the Universe, as laboratories of stellar evolution, fossil tracers of the past formation epoch of the host galaxy, and effective distance indicators from local to cosmological scales. We analyze the properties of the sources in the NGC 253 with the aim of defining an up to date catalog of GC candidates in the galaxy. Given the distance of the galaxy, GCs in NGC 253 are ideal targets for resolved color-magnitude diagram studies of extragalactic GCs with next-generation diffraction limited ground-based telescopes. Our analysis is based on the science verification data of two ESO survey telescopes, VST and VISTA. Using ugri photometry from VST and JKs from VISTA, GC candidates were selected using as reference the morpho-photometric and color properties of spectroscopically confirmed GCs available in the literature. The strength of the results was verified against available archival HST/ACS data from the GHOSTS survey: all but two of the selected GC candidates appear as star clusters in HST footprints. The adopted GC selection leads to the definition of a sample of ~350 GC candidates. At visual inspection, we find that 82 objects match all the requirements for selecting GC candidates and 155 are flagged as uncertain GC candidate; however, 110 are unlikely GCs, which are most likely background galaxies. Furthermore, our analysis shows that four of the previously spectroscopically confirmed GCs, i.e., ~20% of the total spectroscopic sample, are more likely either background galaxies or high-velocity Milky Way stars. The radial density profile of the selected best candidates shows the typically observed r^1/4^-law radial profile. The analysis of the color distributions reveals only marginal evidence of the presence of color bimodality, which is normally observed in galaxies of similar luminosity. The GC luminosity function does not show the typical symmetry, mainly because of the lack of bright GCs. Part of the bright GCs missing might be at very large galactocentric distances or along the line of sight of the galaxy dusty disk. As an alternative possibility, we speculate that a fraction of low luminosity GC candidates might instead be metal-rich, intermediate age clusters, but fall in a similar color interval of old, metal-poor GCs. Defining a contaminant-free sample of GCs in extragalactic systems is not a straight forward exercise. Using optical and near-IR photometry we purged the list of GCs with spectroscopic membership and photometric GC candidates in NGC 253. Our results show that the use of either spectroscopic or photometric data only does not generally ensure a contaminant-free sample and a combination of both spectroscopy and photometry is preferred.
- ID:
- ivo://CDS.VizieR/J/other/NewA/88.J1607
- Title:
- Globular cluster NGC 6397 variable stars
- Short Name:
- J/other/NewA/88.
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We present a new time-series VI CCD photometry of the globular cluster NGC 6397, from which we obtained and analysed the light curves of 35 variables carefully identified in the cluster field. We assessed the membership of the variables with an astrometric analysis based on Gaia DR2 data. The cluster colour-magnitude diagram was differentially de- reddened and cleaned of non members, which allowed us to fit isochrones for [Fe/H]=-2.0dex in the range 13.0-13.5Gyr, for a mean reddening E(B-V)=0.19, and a distance of 2.5kpc. This distance was confirmed using the period-luminosity relation for the cluster's five SX Phoenicis variables (V10, V11, V15, V21, and V23) present among its blue stragglers, yielding 2.24+/-0.13kpc. We also modelled the light curves of four eclipsing binaries (V4, V5, V7, and V8), and gave the parameters of the systems; the contact binaries V7 and V8 have distances consistent with that of the cluster. NGC 6397 appears to harbour no RR Lyrae stars, being its horizontal branch remarkably blue, much like that of its analogous cluster, M10. To match the blue tail of the horizontal branch population, models of 0.64-0.66M_{sun}_ with mass loss at the RGB are required, indicating rather thin shell masses for horizontal branch stars.
- ID:
- ivo://CDS.VizieR/J/AJ/105/1762
- Title:
- Globular clusters around NGC 1399
- Short Name:
- J/AJ/105/1762
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have obtained integrated Washington photometry (C,M,T1) of globular cluster candidates in the field of NGC 1399. This galaxy, the dominant object in the Fornax cluster, shares with NGC 4486 (M87) the property of possessing one of the largest known specific frequencies of globulars. Conflicting evidence on the presence of a B-V color gradient as a function of galactocentric distance has been reported for this cluster system. Here we investigate the existence of a gradient using the C-T1 index, which is twice as metallicity sensitive as B-V. A small gradient is detected. This color gradient, in the sense that outer clusters are bluer, amounts to approx. 0.1 mag in C-T1 over a galactocentric range from about 0.5 to 3.5 arcmin, corresponding to a difference of approx. 0.2 dex in metallicity. This confirms qualitatively the B-V gradient suggested by Bridges et al. [AJ, 101, 469 (1991)]. Photometry for 420 globular cluster candidates is presented. Metal abundances internally precise to approx. 0.25 dex and accurate to approx. 0.3 dex have been obtained for some 250 of the best candidates, after statistically subtracting a field contamination estimated at 30%. The mean abundance of -0.9 +/- 0.2 confirms previous indications that the NGC 1399 globular cluster system is, on average, significantly more metal rich than that of the Galaxy, as expected from the relative parent galaxy luminosities. Approximately 10% of the clusters exceed solar abundance, similar to the case for NGC 5128. The signature of possible globular cluster formation in mergers, as suggested by Ashman and Zepf [ApJ, 384, 50 (1992)], is found in the distinct peaks in the metallicity distribution function. However, their prediction (based on a simple theory designed only for application to normal elliptical galaxies and not the more complicated cD galaxies represented by NGC 1399) that the color difference between the clusters and the background halo light monotonically increases with radius is not borne out by the observations. The difference decreases with radius from the center to approx. 2 arcmin; beyond this radius, the difference does appear to increase, however. At all radii, the mean globular cluster abundance is some 0.25-0.5 dex more metal poor than that of the background halo.
- ID:
- ivo://CDS.VizieR/J/AJ/127/2114
- Title:
- Globular clusters around NGC 1399
- Short Name:
- J/AJ/127/2114
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Radial velocities of 468 globular clusters around NGC 1399, the central galaxy in the Fornax cluster, have been obtained with FORS2 and the Mask Exchange Unit (MXU) at the ESO Very Large Telescope. This is the largest sample of globular cluster velocities around any galaxy obtained so far. The mean velocity uncertainty is 50km/s. This data sample is accurate and large enough to be used in studies of the mass distribution of NGC 1399 and the properties of its globular cluster system. Here we describe the observations and the reduction procedure, and we discuss the uncertainties of the resulting velocities. The complete sample of cluster velocities that is used in a dynamical study of NGC 1399 is tabulated. A subsample is compared with previously published values.
- ID:
- ivo://CDS.VizieR/J/AJ/137/4956
- Title:
- Globular clusters around NGC 1407
- Short Name:
- J/AJ/137/4956
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- NGC 1407 is the central elliptical in a nearby evolved group of galaxies apparently destined to become a galaxy cluster core. We use the kinematics of globular clusters (GCs) to probe the dynamics and mass profile of the group's center, out to a radius of 60kpc (~10 galaxy effective radii)-the most extended data set to date around an early-type galaxy. This sample consists of 172 GC line-of-sight velocities, most of them newly obtained using Keck/DEIMOS, with a few additional objects identified as dwarf-globular transition objects or as intragroup GCs.
- ID:
- ivo://CDS.VizieR/J/PAZh/33/403
- Title:
- Globular clusters as gravitational lenses
- Short Name:
- J/PAZh/33/403
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Based on the SDSS catalog, we have found new close quasar-galaxy pairs. We analyze the radial distribution of quasars from pairs around galaxies of different types. We show that the quasars from pairs follow the density profile of halo globular clusters. This is new observational evidence that the quasars projected onto the halos of galaxies are magnified by gravitational lensing by halo globular clusters.
- ID:
- ivo://CDS.VizieR/J/ApJ/773/L27
- Title:
- Globular clusters in ACSVCS early-type galaxies
- Short Name:
- J/ApJ/773/L27
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a determination of the two-dimensional shape parameters of the blue and red globular cluster systems (GCSs) in a large number of elliptical galaxies and lenticular galaxies (early-type galaxies, called ETGs). We use a homogeneous data set of the globular clusters in 23 ETGs obtained from the HST/ACS Virgo Cluster Survey. The position angles of both blue and red GCSs show a correlation with those of the stellar light distribution, showing that the major axes of the GCSs are well aligned with those of their host galaxies. However, the shapes of the red GCSs show a tight correlation with the stellar light distribution as well as with the rotation property of their host galaxies, while the shapes of the blue GCSs do much less. These provide clear geometric evidence that the origins of the blue and red globular clusters are distinct and that ETGs may have dual halos: a blue (metal-poor) halo and a red (metal-rich) halo. These two halos show significant differences in metallicity, structure, and kinematics, indicating that they are formed in two distinguishable ways. The red halos might have formed via dissipational processes with rotation, while the blue halos are through accretion.