We present results from a variability and proper motion (VPM) search for QSOs in the field around M3. The VPM search is demonstrated to be powerful technique for efficiently finding QSOs without major selection effects with regard to the spectral energy distribution. Remarkably, the properties of the VPM QSOs do not significantly differ from those of samples from more conventional optical search techniques. The lightcurves of the QSOs from the resulting sample provide an interesting data set for the statistical investigation of QSO long-term variability.
We identify 885503 type 1 quasar candidates to i<~22 using the combination of optical and mid-IR photometry. Optical photometry is taken from the Sloan Digital Sky Survey-III: Baryon Oscillation Spectroscopic Survey (SDSS-III/BOSS), while mid-IR photometry comes from a combination of data from the Wide-field Infrared Survey Explorer (WISE) "AllWISE" data release and several large-area Spitzer Space Telescope fields. Selection is based on a Bayesian kernel density algorithm with a training sample of 157701 spectroscopically confirmed type 1 quasars with both optical and mid-IR data. Of the quasar candidates, 733713 lack spectroscopic confirmation (and 305623 are objects that we have not previously classified as photometric quasar candidates). These candidates include 7874 objects targeted as high-probability potential quasars with 3.5<z<5 (of which 6779 are new photometric candidates). Our algorithm is more complete to z>3.5 than the traditional mid-IR selection "wedges" and to 2.2<z<3.5 quasars than the SDSS-III/BOSS project. Number counts and luminosity function analysis suggest that the resulting catalog is relatively complete to known quasars and is identifying new high-z quasars at z>3. This catalog paves the way for luminosity-dependent clustering investigations of large numbers of faint, high-redshift quasars and for further machine-learning quasar selection using Spitzer and WISE data combined with other large-area optical imaging surveys.
We present a sample of 8498 quasars with both Sloan Digital Sky Survey (SDSS) ugriz optical and United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) YJHK near-infrared (near-IR) photometric data. With this sample, we obtain the median colour-z relations based on 7400 quasars with magnitude uncertainties less than 0.1mag in all bands. By analysing the quasar colours, we propose an empirical criterion in the Y-K versus g-z colour-colour diagram to separate stars and quasars with redshift z<4, and two other criteria for selecting high-redshift quasars. Using the SDSS-UKIDSS colour-z relations, we estimate the photometric redshifts of 8498 SDSS-UKIDSS quasars, and find that 85.0 per cent of them are consistent with the spectroscopic redshifts within |{Delta}z|<0.2, which leads to a significant increase of the photometric redshift accuracy from that based on the SDSS colour-z relations only. As two tests, we compare our colour-selection criterion with a small UKIDSS/EDR quasar/star sample and a sample of 4671 variable sources in the SDSS Stripe 82 region with both SDSS and UKIDSS data. We find that they can be clearly divided into two classes (quasars and stars) by our criterion in the Y-K versus g-z plot.
We determine the number counts and z=0-5 luminosity function for a well-defined, homogeneous sample of quasars from the Sloan Digital Sky Survey (SDSS). We conservatively define the most uniform statistical sample possible, consisting of 15343 quasars within an effective area of 1622{deg}^2^ that was derived from a parent sample of 46420 spectroscopically confirmed broad-line quasars in the 5282{deg}^2^ of imaging data from SDSS Data Release 3. The sample extends from i=15 to 19.1 at z<~3 and to i=20.2 for z>~3.
We present a new catalogue of ~2400 optically selected quasars with spectroscopic redshifts and X-ray observations from either Chandra or XMM-Newton. The sample can be used to investigate the non-linear relation between the UV and X-ray luminosity of quasars, and to build a Hubble diagram up to redshift z~7.5. We selected sources that are neither reddened by dust in the optical/UV nor obscured by gas in the X-rays, and whose X-ray fluxes are free from flux-limit related biases. After checking for any possible systematics, we confirm, in agreement with our previous works, that (i) the X-ray to UV relation provides distance estimates matching those from supernovae up to z~1.5, and (ii) its slope shows no redshift evolution up to z~5. We provide a full description of the methodology for testing cosmological models, further supporting a trend whereby the Hubble diagram of quasars is well reproduced by the standard flat LambdaCDM model up to z~1.5-2, but strong deviations emerge at higher redshifts. Since we have minimized all non-negligible systematic effects, and proven the stability of the Lx-Lo relation at high redshifts, we conclude that an evolution of the expansion rate of the Universe should be considered as a possible explanation for the observed deviation, rather than some systematic (redshift-dependent) effect associated with high-redshift quasars.
We present a catalog of 37842 quasars in the Sloan Digital Sky Survey (SDSS) Data Release 7, which have counterparts within 6" in the Wide-field Infrared Survey Explorer (WISE) Preliminary Data Release. The overall WISE detection rate of the SDSS quasars is 86.7%, and it decreases to less than 50.0% when the quasar magnitude is fainter than i=20.5. We derive the median color-redshift relations based on this SDSS-WISE quasar sample and apply them to estimate the photometric redshifts of the SDSS-WISE quasars. We find that by adding the WISE W1- and W2-band data to the SDSS photometry we can increase the photometric redshift reliability, defined as the percentage of sources with photometric and spectroscopic redshift difference less than 0.2, from 70.3% to 77.2%. We also obtain the samples of WISE-detected normal and late-type stars with SDSS spectroscopy, and present a criterion in the z-W1 versus g-z color-color diagram, z-W1>0.66(g-z)+2.01, to separate quasars from stars. With this criterion we can recover 98.6% of 3089 radio-detected SDSS-WISE quasars with redshifts less than four and overcome the difficulty in selecting quasars with redshifts between 2.2 and 3 from SDSS photometric data alone. We also suggest another criterion involving the WISE color only, W1-W2>0.57, to efficiently separate quasars with redshifts less than 3.2 from stars. In addition, we compile a catalog of 5614 SDSS quasars detected by both WISE and UKIDSS surveys and present their color-redshift relations in the optical and infrared bands. By using the SDSS ugriz, UKIDSS, YJHK, and WISE W1- and W2-band photometric data, we can efficiently select quasar candidates and increase the photometric redshift reliability up to 87.0%. We discuss the implications of our results on the future quasar surveys. An updated SDSS-WISE quasar catalog consisting of 101853 quasars with the recently released WISE all-sky data is also provided.
We assemble 3524 quasars from the Sloan Digital Sky Survey (SDSS) with repeated observations to search for variations of the narrow C IV {lambda}{lambda}1548, 1551 and Mg II {lambda}{lambda}2796, 2803 absorption doublets in spectral regions shortward of 7000{AA} in the observed frame, which corresponds to time-scales of about 150-2643d in the quasar rest frame. In these quasar spectra, we detect 3580 CIV absorption systems with z_abs_=1.5188-3.5212 and 1809 MgII absorption systems with z_abs_=0.3948-1.7167. In term of the absorber velocity ({beta}) distribution in the quasar rest frame, we find a substantial number of CIV absorbers with {beta}<0.06, which might be connected to absorption of quasar outflows. The outflow absorption peaks at {upsilon}~2000km/s and drops rapidly below this peak value. Among 3580 CIV absorption systems, 52 systems (~1.5 percent) show obvious variations in equivalent widths in the absorber rest frame (W_r_): 16 enhanced, 16 emerged, 12 weakened and 8 disappeared systems, respectively. We find that changes in W_r_{lambda}1548 are related neither to the time-scales of the two SDSS observations nor to absorber velocities in the quasar rest frame. Variable absorption in low-ionization species is important to constrain the physical conditions of the absorbing gas. There are two variable MgII absorption systems measured from SDSS spectra detected by Hacker et al. (2013, J/MNRAS/434/163). However, in our MgII absorption sample, we find that neither shows variable absorption with confident levels of >4{sigma} for {lambda}2796 lines and >3{sigma} for {lambda}2803 lines.
The relation between quasar variability and parameters such as luminosity and redshift has been a matter of hot debate over the last few years with many papers on the subject. Any correlations which can be established will have a profound effect on models of quasar structure and evolution. The sample of quasars with redshifts in ESO/SERC field 287 contains over 600 quasars in the range 0<z<3.5 and is now large enough to bin in luminosity and redshift, and give definitive measures of the correlations. We find no significant correlation between amplitude and redshift, except perhaps at very low redshift, but an inverse correlation between amplitude and luminosity. This is examined in the context of various models for quasar variability.
We provide a quantitative description and statistical interpretation of the optical continuum variability of quasars. The Sloan Digital Sky Survey (SDSS) has obtained repeated imaging in five UV-to-IR photometric bands for 33,881 spectroscopically confirmed quasars. About 10,000 quasars have an average of 60 observations in each band obtained over a decade along Stripe 82 (S82), whereas the remaining ~25,000 have 2-3 observations due to scan overlaps. The observed time lags span the range from a day to almost 10 years, and constrain quasar variability at rest-frame time lags of up to 4 years, and at rest-frame wavelengths from 1000{AA} to 6000{AA}. We publicly release a user-friendly catalog of quasars from the SDSS Data Release 7 that have been observed at least twice in SDSS or once in both SDSS and the Palomar Observatory Sky Survey, and we use it to analyze the ensemble properties of quasar variability. Based on a damped random walk (DRW) model defined by a characteristic timescale and an asymptotic variability amplitude that scale with the luminosity, black hole mass, and rest wavelength for individual quasars calibrated in S82, we can fully explain the ensemble variability statistics of the non-S82 quasars such as the exponential distribution of large magnitude changes. All available data are consistent with the DRW model as a viable description of the optical continuum variability of quasars on timescales of ~5-2000 days in the rest frame. We use these models to predict the incidence of quasar contamination in transient surveys such as those from the Palomar Transient Factory and Large Synoptic Survey Telescope.
Rotation and magnetic activity are intimately linked in main-sequence stars of G or later spectral types. The presence and level of magnetic activity depend on stellar rotation, and rotation itself is strongly influenced by strength and topology of the magnetic fields. Open clusters represent especially useful targets to investigate the rotation/activity/age connection. The open cluster M11 has been studied as a part of the RACE-OC project (Rotation and ACtivity Evolution in Open Clusters), which is aimed at exploring the evolution of rotation and magnetic activity in the late-type members of open clusters with different ages. Photometric observations of the open cluster M11 were carried out in June 2004 using LOAO 1m telescope. The rotation periods of the cluster members are determined by Fourier analysis of photometric data time series. We further investigated the relations between the surface activity, characterized by the light curve amplitude, and rotation. We have discovered a total of 75 periodic variables in the M11 FoV, of which 38 are candidate cluster members. Specifically, among cluster members we discovered 6 early-type, 2 eclipsing binaries and 30 bona-fide single periodic late-type variables. Considering the rotation periods of 16 G-type members of the almost coeval 200-Myr M34 cluster, we could determine the rotation period distribution from a more numerous sample of 46 single G stars at an age of about 200-230 Myr and determine a median rotation period P=4.8d. A comparison with the younger M35 cluster (~150Myr) and with the older M37 cluster (~550Myr) shows that G stars rotate slower than younger M35 stars and faster than older M37 stars. The measured variation of the median rotation period is consistent with the scenario of rotational braking of main-sequence spotted stars as they age.