- ID:
- ivo://CDS.VizieR/J/AJ/155/133
- Title:
- Radial velocities of the semi-detached Algol W UMi
- Short Name:
- J/AJ/155/133
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Double-lined eclipsing binaries allow accurate and direct determination of fundamental parameters such as mass and radius for each component, and they provide important constraints on the stellar structure and evolution models. In this study, we aim to determine a unique set of binary parameters for the Algol system W UMi and to examine its evolutionary status. New high-resolution time-series spectroscopic observations were carried out during 14 nights from 2008 April to 2011 March, and a total of 37 spectra were obtained using the Bohyunsan Optical Echelle Spectrograph. We measured the radial velocities (RVs) for both components, and the effective temperature of the primary star was found to be T_eff,1_=9310+/-90K by a comparison of the observed spectra and the Kurucz models. The physical parameters of W UMi were derived by an analysis of our RV data together with the multi-band light curves of Devinney et al. The individual masses, radii, and luminosities of both components are M1=3.68+/-0.10M_{sun}_ and M2=1.47+/-0.04M_{sun}_, R1=3.88+/-0.03R_{sun}_ and R2=3.13+/-0.03R_{sun}_, and L1=102+/-1L_{sun}_ and L2=7.3+/-0.1L_{sun}_, respectively. A comparison of these parameters with theoretical stellar models showed that the primary component lies in the main-sequence band, while the less massive secondary is noticeably evolved. The results indicate that the initially more massive star became the present secondary by losing most of its own mass via mass transfer to the companion (present primary).
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/899/29
- Title:
- Radial velocities of TOI-1728 with HPF
- Short Name:
- J/ApJ/899/29
- Date:
- 14 Mar 2022 09:03:00
- Publisher:
- CDS
- Description:
- We confirm the planetary nature of TOI-1728b using a combination of ground-based photometry, near-infrared Doppler velocimetry and spectroscopy with the Habitable-zone Planet Finder. TOI-1728 is an old, inactive M0 star with Teff=3980_-32_^+31^K, which hosts a transiting super-Neptune at an orbital period of ~3.49days. Joint fitting of the radial velocities and TESS and ground-based transits yields a planetary radius of 5.05_-0.17_^+0.16^ R{Earth}, mass 26.78_-5.13_^+5.43^M{Earth}, and eccentricity 0.057_-0.039_^+0.054^. We estimate the stellar properties, and perform a search for He 10830{AA} absorption during the transit of this planet and claim a null detection with an upper limit of 1.1% with 90% confidence. A deeper level of He 10830{AA} absorption has been detected in the planet atmosphere of GJ3470b, a comparable gaseous planet. TOI-1728b is the largest super-Neptune-the intermediate subclass of planets between Neptune and the more massive gas-giant planets-discovered around an M-dwarf. With its relatively large mass and radius, TOI-1728 represents a valuable data point in the M-dwarf exoplanet mass-radius diagram, bridging the gap between the lighter Neptune-sized planets and the heavier Jovian planets known to orbit M dwarfs. With a low bulk density of 1.14_-0.24_^+0.26^g/cm^3^, and orbiting a bright host star (J~9.6, V~12.4), TOI-1728b is also a promising candidate for transmission spectroscopy both from the ground and from space, which can be used to constrain planet formation and evolutionary models.
- ID:
- ivo://CDS.VizieR/J/A+A/383/823
- Title:
- Radial velocities of UCOs in Fornax
- Short Name:
- J/A+A/383/823
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The relation between the Ultra Compact Objects (hereafter UCOs) recently discovered in the Fornax cluster (Drinkwater et al., 2000PASA...17..227D; Hilker et al., 1999, Cat. <J/A+AS/134/75>) and the brightest globular clusters associated with the central galaxy NGC 1399 has been investigated. A spectroscopic survey on compact objects in the central region of the Fornax cluster was carried out with the 2.5 m du Pont telescope (LCO) at Las Campanas, in the three nights of 2000/12/30 to 2001/01/01. The magnitude limit was approx. V=21 mag, the spectral resolution approx. 4{AA}. UCOs and the bright NGC 1399 globular clusters with similar brightness were inspected. 12 GCs from the bright end of the globular cluster luminosity function have been identified as Fornax members. Eight are new members, four were known as members from before.
- ID:
- ivo://CDS.VizieR/J/AJ/156/231
- Title:
- Radial velocities of 2 VY Sculptoris-type CV stars
- Short Name:
- J/AJ/156/231
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report observations of the known cataclysmic variable star (CV) V704 And, and also confirm that the optical counterpart of the ROSAT Galactic Plane Survey source RX J2338+431 is a heretofore-neglected CV. Photometric and spectroscopic observations from MDM Observatory show both systems to be nova-like variables that exhibit dips of 4-5 mag from their mean brightnesses, establishing them as members of the VY Scl subclass. From high-state emission-line radial velocities, we determine orbital periods of 0.151424(3) days (3.63 hr) for V704 And and 0.130400(1) days (3.13 hr) for RX J2338+431. In V704 And, we find that the H{alpha} emission-line measures cluster into distinct regions on a plot of equivalent width versus full width at half-maximum, which evidently correspond to high, intermediate, and low photometric states. This allows us to assign spectra to photometric states when contemporaneous photometry is not available, an apparently novel method that may be useful in studies of other novalikes. Our low-state spectra of RX J2338+431 show features of an M-type secondary star, from which we estimate a distance of 890+/-200 pc, in good agreement with the Gaia DR2 (Cat. I/345) parallax.
- ID:
- ivo://CDS.VizieR/J/AJ/160/251
- Title:
- Radial velocities & orbital data, 5 triple stars
- Short Name:
- J/AJ/160/251
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Joint analysis of radial velocities and position measurements of five hierarchical stellar systems is undertaken to determine elements of their inner and outer orbits and, whenever possible, their mutual inclinations. The inner and outer periods are 12.9 and 345yr for HD12376 (ADS1613), 1.14 and ~1500yr for HD19971 (ADS2390), 8.3 and 475yr for HD89795 (ADS7338), 1.11 and 40yr for HD152027, 0.69 and 7.4yr for HD190412. The latter system with its coplanar and quasi-circular orbits belongs to the family of compact planetary-like hierarchies, while the orbits in HD12376 have a mutual inclination of 131{deg}.
- ID:
- ivo://CDS.VizieR/J/AJ/155/192
- Title:
- Radial velocities & photometry of AD Leonis & GJ 674
- Short Name:
- J/AJ/155/192
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- AD Leonis is a nearby magnetically active M dwarf. We find Doppler variability with a period of 2.23 days, as well as photometric signals: (1) a short-period signal, which is similar to the radial velocity signal, albeit with considerable variability; and (2) a long-term activity cycle of 4070+/-120 days. We examine the short-term photometric signal in the available All-Sky Automated Survey and Microvariability and Oscillations of STars (MOST) photometry and find that the signal is not consistently present and varies considerably as a function of time. This signal undergoes a phase change of roughly 0.8 rad when considering the first and second halves of the MOST data set, which are separated in median time by 3.38 days. In contrast, the Doppler signal is stable in the combined High-Accuracy Radial velocity Planet Searcher and High Resolution Echelle Spectrometer radial velocities for over 4700 days and does not appear to vary in time in amplitude, phase, period, or as a function of extracted wavelength. We consider a variety of starspot scenarios and find it challenging to simultaneously explain the rapidly varying photometric signal and the stable radial velocity signal as being caused by starspots corotating on the stellar surface. This suggests that the origin of the Doppler periodicity might be the gravitational tug of a planet orbiting the star in spin-orbit resonance. For such a scenario and no spin-orbit misalignment, the measured vsini indicates an inclination angle of 15.5+/-2.5{deg} and a planetary companion mass of 0.237+/-0.047 M_Jup_.
- ID:
- ivo://CDS.VizieR/J/AJ/155/126
- Title:
- Radial velocities & photometry of the K dwarf HD26965
- Short Name:
- J/AJ/155/126
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of a radial velocity signal that can be interpreted as a planetary-mass candidate orbiting the K dwarf HD 26965, with an orbital period of 42.364+/-0.015 days, or alternatively, as the presence of residual, uncorrected rotational activity in the data. Observations include data from HIRES, PFS, CHIRON, and HARPS, where 1111 measurements were made over 16 years. Our best solution for HD 26965 b is consistent with a super-Earth that has a minimum mass of 6.92+/-0.79 M_{Earth}_ orbiting at a distance of 0.215+/-0.008 au from its host star. We have analyzed the correlation between spectral activity indicators and the radial velocities from each instrument, showing moderate correlations that we include in our model. From this analysis, we recover a ~38-day signal, which matches some literature values of the stellar rotation period. However, from independent Mt. Wilson HK data for this star, we find evidence for a significant 42-day signal after subtraction of longer period magnetic cycles, casting doubt on the planetary hypothesis for this period. Although our statistical model strongly suggests that the 42-day signal is Doppler in origin, we conclude that the residual effects of stellar rotation are difficult to fully model and remove from this data set, highlighting the difficulties to disentangle small planetary signals and photospheric noise, particularly when the orbital periods are close to the rotation period of the star. This study serves as an excellent test case for future works that aim to detect small planets orbiting "Sun-like" stars using radial velocity measurements.
- ID:
- ivo://CDS.VizieR/III/239
- Title:
- Radial Velocities with Astrometric Data
- Short Name:
- III/239
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The catalogue of radial velocities of Galactic stars with high precision astrometric data (CRVAD) is the result of a merging of star lists from the General Catalog of Mean Radial Velocities (GCRV, Cat. III/213) and from the All-sky Compiled Catalogue of 2.5 Million Stars (ASCC-2.5, Cat. I/280). The cross identification of GCRV and ASCC-2.5 objects was carried out with help of coordinate, magnitude, colour and/or spectral type criteria. Data from the Catalogue of Components of Double and Multiple Stars (CCDM, Cat. I/274) were taken into account for the identification of multiple system components. 34553 stars of the ASCC-2.5 were identified with 33509 stars of the GCRV, i.e. 33509 stars of the GCRV have one entry in the ASCC-2.5, and 1044 objects have two entries. The catalogue includes accurate equatorial coordinates J2000, proper motions and trigonometric parallaxes in the Hipparcos system, B and V magnitudes in Johnson system, spectral classes, multiplicity and variability flags from the ASCC-2.5, and radial velocities, stellar magnitudes and spectra from the GCRV. Stars are sorted in right ascension J2000 order. 3967 stars were selected as radial velocity standard candidates (file rv_std.dat). These stars: - do not have any multiplicity and/or variability flags both in the GCRV and ASCC-2.5; - have standard errors of equatorial coordinates e <= 40 mas; - have standard errors of proper motions e_pm <= 4 mas/yr; - have standard errors of V magnitude e_V <= 0.05 mag and (B-V) colour e_(B-V) <= 0.07 mag; - have standard errors of radial velocity e_RV <= 2 km/s or quality index A or B, which corresponds to e_RV 0.74 and 1.78 km/s; - have at least four RV observations N_RV.
- ID:
- ivo://CDS.VizieR/J/ApJ/903/110
- Title:
- Radial velocity and g-i color in M85 globular clusters
- Short Name:
- J/ApJ/903/110
- Date:
- 15 Mar 2022
- Publisher:
- CDS
- Description:
- We present a study on the stellar population and kinematics of globular clusters (GCs) in the peculiar galaxy M85. We obtain optical spectra of 89 GCs at 8kpc<R<160kpc using the MMT/Hectospec. We divide them into three groups, blue/green/red GCs (B/G/RGCs), with their (g-i)0 colors. All GC subpopulations have mean ages of about 10Gyr, but showing differences in metallicities. The BGCs and RGCs are the most metal-poor ([Z/H]~-1.49) and metal-rich ([Z/H]~-0.45), respectively, and the GGCs are in between. We find that the inner GC system exhibits a strong overall rotation that is entirely due to a disklike rotation of the RGC system. The BGC system shows little rotation. The GGCs show kinematic properties clearly distinct among the GC subpopulations, having higher mean velocities than the BGCs and RGCs and being aligned along the major axis of M85. This implies that the GGCs have an origin different from the other GC subpopulations. The rotation-corrected velocity dispersion of the RGC system is much lower than that of the BGC system, indicating the truncation of the red halo of M85. The BGCs have a flat velocity dispersion profile out to R=67kpc, reflecting the dark matter extent of M85. Using the velocity dispersion of the BGC system, we estimate the dynamical mass of M85 to be 3.8x1012M{sun}. We infer that M85 has undergone merging events lately, resulting in the peculiar kinematics of the GC system.
- ID:
- ivo://CDS.VizieR/J/A+A/567/A69
- Title:
- Radial velocity and photometry in NGC 4372
- Short Name:
- J/A+A/567/A69
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first in-depth study of the kinematic properties and derive the structural parameters of NGC 4372 based on the fit of a Plummer profile and a rotating, physical model. We explore the link between internal rotation to different cluster properties and together with similar studies of more GCs, we put these in the context of globular cluster formation and evolution. We present radial velocities for 131 cluster member stars measured from high-resolution FLAMES/GIRAFFE observations. Their membership to the GC is additionally confirmed from precise metallicity estimates. Using this kinematic data set we build a velocity dispersion profile and a systemic rotation curve. Additionally, we obtain an elliptical number density profile of NGC 4372 based on optical images using a MCMC fitting algorithm. From this we derive the cluster's half-light radius and ellipticity as r_h_=3.4'+/-0.04' and e=0.08+/-0.01. Finally, we give a physical interpretation of the observed morphological and kinematic properties of this GC by fitting an axisymmetric, differentially rotating, dynamical model. Our results show that NGC 4372 has an unusually high ratio of rotation amplitude to velocity dispersion (1.2 vs. 4.5km/s) for its metallicity. This, however, puts it in line with two other exceptional, very metal-poor GCs - M 15 and NGC 4590. We also find a mild flattening of NGC 4372 in the direction of its rotation. Given its old age, this suggests that the flattening is indeed caused by the systemic rotation rather than tidal interactions with the Galaxy. Additionally, we estimate the dynamical mass of the GC M_dyn=2.0+/-0.5 x 10^5 M_Sun based on the dynamical model, which constrains the mass-to-light ratio of NGC 4372 between 1.4 and 2.3 M_Sun/L_Sun, representative of an old, purely stellar population.