- ID:
- ivo://CDS.VizieR/J/AJ/162/181
- Title:
- RVel & Hipparcos positions of epsilon Eridani
- Short Name:
- J/AJ/162/181
- Date:
- 14 Mar 2022 06:39:08
- Publisher:
- CDS
- Description:
- {epsilon}Eridani is a young planetary system hosting a complex multibelt debris disk and a confirmed Jupiter-like planet orbiting at 3.48au from its host star. Its age and architecture are thus reminiscent of the early Solar System. The most recent study of Mawet et al., which combined radial-velocity data and Ms-band direct imaging upper limits, started to constrain the planet's orbital parameters and mass, but are still affected by large error bars and degeneracies. Here we make use of the most recent data compilation from three different techniques to further refine {epsilon}Eridani b's properties: RVs, absolute astrometry measurements from the Hipparcos and Gaia missions, and new Keck/NIRC2 Ms-band vortex coronagraph images. We combine this data in a Bayesian framework. We find a new mass, M_b_=0.66_-0.09_^+0.12^M_Jup_, and inclination, i=78.81_-22.41_^+29.34^deg, with at least a factor 2 of improvement over previous uncertainties. We also report updated constraints on the longitude of the ascending node, the argument of the periastron, and the time of periastron passage. With these updated parameters, we can better predict the position of the planet at any past and future epoch, which can greatly help define the strategy and planning of future observations and with subsequent data analysis. In particular, these results can assist the search for a direct detection with JWST and the Nancy Grace Roman Space Telescope's coronagraph instrument.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/155/79
- Title:
- RV & light curves data for 4 G-type dwarf stars
- Short Name:
- J/AJ/155/79
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of four close-in transiting exoplanets (HATS-50b through HATS-53b), discovered using the HATSouth three-continent network of homogeneous and automated telescopes. These new exoplanets belong to the class of hot Jupiters and orbit G-type dwarf stars, with brightness in the range V=12.5-14.0 mag. While HATS-53 has many physical characteristics similar to the Sun, the other three stars appear to be metal-rich ([Fe/H]=0.2-0.3), larger, and more massive. Three of the new exoplanets, namely HATS-50b, HATS-51b, and HATS-53b, have low density (HATS-50b: 0.39+/-0.10 M_J_, 1.130+/-0.075 R_J_; HATS-51b: 0.768+/-0.045 M_J_, 1.41+/-0.19 R_J_; HATS-53b: 0.595+/-0.089 M_J_, 1.340+/-0.056 R_J_) and similar orbital periods (3.8297 days, 3.3489 days, 3.8538 days, respectively). Instead, HATS-52b is more dense (mass 2.24+/-0.15 M_J_ and radius 1.382+/-0.086 R_J_) and has a shorter orbital period (1.3667 days). It also receives an intensive radiation from its parent star and, consequently, presents a high equilibrium temperature (T_eq_=1834+/-73 K). HATS-50 shows a marginal additional transit feature consistent with an ultra-short-period hot super Neptune (upper mass limit 0.16 M_J_), which will be able to be confirmed with TESS photometry.
- ID:
- ivo://CDS.VizieR/J/AJ/123/3154
- Title:
- RV light curves of variable stars in Leo A
- Short Name:
- J/AJ/123/3154
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a search for short-period variable stars in Leo A. We have found 92 candidate variables, including eight candidate RR Lyrae stars. From the RR Lyrae stars, we measure a distance modulus of (m-M)0=24.51+/-0.12, or 0.80+/-0.04Mpc. This discovery of RR Lyrae stars confirms for the first time the presence of an ancient (older than ~11Gyr) population in Leo A, accounting for at least 0.1% of the galaxy's V luminosity. We have also discovered a halo of old (more than ~2Gyr) stars surrounding Leo A, with a scale length roughly 50% larger than that of the dominant young population. We also report the discovery of a large population of Cepheids in Leo A. The median absolute magnitude of our Cepheid sample is M_V_=-1.1, fainter than 96% of SMC and 99% of LMC Cepheids. Their periods are also unusual, with three Cepheids that are deduced to be pulsating in the fundamental mode having periods of under 1 day. Upon examination, these characteristics of the Leo A Cepheid population appear to be a natural extension of the classical Cepheid period-luminosity relations to low metallicity, rather than being indicative of a large population of "anomalous" Cepheids. We demonstrate that the periods and luminosities are consistent with the expected values of low-metallicity blue helium-burning stars (BHeB's), which populate the instability strip at lower luminosities than do higher metallicity BHeB's. Observations of Leo A were obtained at the WIYN 3.5 m telescope on the nights of 20-22 December 2000, using the MIMO camera.
- ID:
- ivo://CDS.VizieR/J/AJ/140/1337
- Title:
- RV of 111 Galactic halo stars in Virgo
- Short Name:
- J/AJ/140/1337
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present multi-slit radial velocity measurements for 111 stars in the direction of the Virgo Stellar Stream (VSS). The stars were photometrically selected to be probable main-sequence stars in the Galactic halo. When compared with the radial velocity distribution expected for the halo of the Milky Way, as well as the distribution seen in a control field, we observe a significant excess of negative velocity stars in the field, which can likely be attributed to the presence of a stellar stream.
- ID:
- ivo://CDS.VizieR/J/ApJS/247/11
- Title:
- RV photon limits of well-characterized F-M stars
- Short Name:
- J/ApJS/247/11
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The determination of extrasolar planet masses with the radial velocity (RV) technique requires spectroscopic Doppler information from the planet's host star, which varies with stellar brightness and temperature. We analyze the Doppler information in spectra from dwarfs of spectral types F-M utilizing empirical information from HARPS and CARMENES data and model spectra. We revisit the question of whether optical or near-infrared instruments are more efficient for RV observations in low-mass stars, and we come to the conclusion that an optical setup (BVR bands) is more efficient than a near-infrared one (YJHK) in dwarf stars hotter than 3200K. We publish a catalog of 46480 well-studied F-M dwarfs in the solar neighborhood, and we compare its distribution to more than 1 million stars from Gaia DR2. For all stars, we estimate the RV photon noise achievable in typical observations under the assumption of no activity jitter and slow rotation. We find that with an ESPRESSO-like instrument at an 8m telescope, a photon noise limit of 10cm/s or lower can be reached in more than 280 stars in a 5 minute observation. At 4m telescopes, a photon noise limit of 1m/s can be reached in a 10 minute exposure in approximately 10000 predominantly Sun-like stars with a HARPS-like (optical) instrument. The same applies to ~3000 stars for a red optical setup that covers the R and I bands and ~700 stars for a near-infrared instrument. For the latter two, many of the targets are nearby M dwarfs. Finally, we identify targets in which Earth-mass planets within the liquid water habitable zone can cause RV amplitudes comparable to the RV photon noise. Assuming the same exposure times as above, we find that an ESPRESSO-like instrument can reach this limit for 1M_{Earth}_ planets in more than 1000 stars. The optical, red optical, and near-infrared configurations reach the limit for 2M_{Earth}_ planets in approximately 500, 700, and 200 stars, respectively. An online tool is provided to estimate the RV photon noise as a function of stellar temperature and brightness and wavelength coverage.
- ID:
- ivo://CDS.VizieR/J/AJ/157/55
- Title:
- RVs and light curves for HATS-60-HATS-69
- Short Name:
- J/AJ/157/55
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of 10 transiting extrasolar planets by the HATSouth survey. The planets range in mass from the super-Neptune HATS-62b, with M_p_<0.179 M_J_, to the super-Jupiter HATS-66b, with M_p_=5.33 M_J_, and in size from the Saturn HATS-69b, with R_p_=0.94 R_J_, to the inflated Jupiter HATS-67b, with R_p_=1.69 R_J_. The planets have orbital periods between 1.6092 days (HATS-67b) and 7.8180 days (HATS-61b). The hosts are dwarf stars with masses ranging from 0.89 M_{sun}_ (HATS-69) to 1.56 M_{sun}_ (HATS-64) and have apparent magnitudes between V=12.276+/-0.020 mag (HATS-68) and V=14.095+/-0.030 mag (HATS-66). The super-Neptune HATS-62b is the least massive planet discovered to date with a radius larger than Jupiter. Based largely on the Gaia DR2 distances and broadband photometry, we identify three systems (HATS-62, HATS-64, and HATS-65) as having possible unresolved binary star companions. We discuss in detail our methods for incorporating the Gaia DR2 observations into our modeling of the system parameters and into our blend analysis procedures.
- ID:
- ivo://CDS.VizieR/J/AJ/159/145
- Title:
- RVs and opt. photometry of the host star TOI-677
- Short Name:
- J/AJ/159/145
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of TOI-677b, first identified as a candidate in light curves obtained within Sectors 9 and 10 of the Transiting Exoplanet Survey Satellite (TESS) mission and confirmed with radial velocities. TOI-677b has a mass of M_p_=1.236_-0.067_^+0.069^M_J_, a radius of R_P_=1.170{+/-}0.03R_J_, and orbits its bright host star (V=9.8mag) with an orbital period of 11.23660{+/-}0.00011d, on an eccentric orbit with e=0.435{+/-}0.024. The host star has a mass of M_*_=1.181{+/-}0.058M_{sun}_, a radius of R_*_=1.28_-0.03_^+0.03^R_{sun}_, an age of 2.92_-0.73_^+0.80^Gyr and solar metallicity, properties consistent with a main-sequence late-F star with T_eff_=6295{+/-}77K. We find evidence in the radial velocity measurements of a secondary long-term signal, which could be due to an outer companion. The TOI-677b system is a well-suited target for Rossiter-Mclaughlin observations that can constrain migration mechanisms of close-in giant planets.
- ID:
- ivo://CDS.VizieR/J/ApJ/836/177
- Title:
- RVs and R-band obs. of the EB* V541 Cyg
- Short Name:
- J/ApJ/836/177
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report new spectroscopic and photometric observations of the main-sequence, detached, eccentric, double-lined eclipsing binary V541Cyg (P=15.34d, e=0.468). Using these observations together with existing measurements, we determine the component masses and radii to better than 1% precision: M_1_=2.335_-0.013_^+0.017^M_{sun}_, M_2_=2.260_-0.013_^+0.016^M_{sun}_, R_1_=1.859_-0.009_^+0.012^R_{sun}_, and R_2_=1.808_-0.013_^+0.015^R_{sun}_. The nearly identical B9.5 stars have estimated effective temperatures of 10650+/-200K and 10350+/-200K. A comparison of these properties with current stellar evolution models shows excellent agreement at an age of about 190Myr and [Fe/H]~-0.18. Both components are found to be rotating at the pseudo-synchronous rate. The system displays a slow periastron advance that is dominated by general relativity (GR), and has previously been claimed to be slower than predicted by theory. Our new measurement, dot{omega}=0.859_-0.017_^+0.042^deg/century, has an 88% contribution from GR and agrees with the expected rate within the uncertainties. We also clarify the use of the gravity darkening coefficients in the light-curve fitting Eclipsing Binary Orbit Program (EBOP), a version of which we use here.
- ID:
- ivo://CDS.VizieR/J/AJ/160/222
- Title:
- RVs and RI-photometry of HATS-37 and HATS-38
- Short Name:
- J/AJ/160/222
- Date:
- 09 Mar 2022 22:00:00
- Publisher:
- CDS
- Description:
- We report the discovery of two transiting Neptunes by the HATSouth survey. The planet HATS-37Ab has a mass of 0.099{+/-}0.042M_Jup_ (31.5{+/-}13.4M{Earth}) and a radius of 0.606{+/-}0.016R_Jup_, and is on a P=4.3315day orbit around a V=12.266{+/-}0.030mag, 0.843_-0.012_^+0.017^M{odot} star with a radius of 0.877_-0.012_^+0.019^R{odot}. We also present evidence that the star HATS-37A has an unresolved stellar companion HATS-37B, with a photometrically estimated mass of 0.654{+/-}0.033M{odot}. The planet HATS-38b has a mass of 0.074{+/-}0.011M_Jup_ (23.5{+/-}3.5M{Earth}) and a radius of 0.614{+/-}0.017R_Jup_, and is on a P=4.3750day orbit around a V=12.411{+/-}0.030mag, 0.890_-0.012_^+0.016^M{odot} star with a radius of 1.105{+/-}0.016 R{odot}. Both systems appear to be old, with isochrone-based ages of 11.46_-1.45_^+0.79^Gyr, and 11.89{+/-}0.60Gyr, respectively. Both HATS-37Ab and HATS-38b lie in the Neptune desert and are thus examples of a population with a low occurrence rate. They are also among the lowest-mass planets found from ground-based wide-field surveys to date.
- ID:
- ivo://CDS.VizieR/J/AJ/160/151
- Title:
- RVs of 5 cataclysmic variable candidates
- Short Name:
- J/AJ/160/151
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report follow-up observations of five cataclysmic variable candidates from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) published by Hou et al. LAMOSTJ024048.51+195226.9 is the most unusual of the five; an early-M type secondary star contributes strongly to its spectrum, and its spectral and photometric behavior are strikingly reminiscent of the hitherto-unique propeller system AE Aqr. We confirm that a 7.34hr period discovered in the Catalina survey data is orbital. Another object, LAMOSTJ204305.95+341340.6, appears to be a near twin of the novalike variable V795Her, with an orbital period in the so-called 2-3hr "gap." LAMOSTJ035913.61+405035.0 is evidently an eclipsing, weakly outbursting dwarf nova with a 5.48hr period. Our spectrum of LAMOSTJ090150.09+375444.3 is dominated by a late-type secondary and shows weak, narrow Balmer emission moving in phase with the absorption lines, but at lower amplitude; we do not see the HeII {lambda}4686 emission evident in the published discovery spectrum. We again confirm that a period from the Catalina data, in this case 6.80hr, is orbital. LAMOSTJ033940.98+414805.7 yields a radial-velocity period of 3.54hr, and its spectrum appears to be typical of novalike variables in this period range. The spectroscopically selected sample from LAMOST evidently includes some interesting cataclysmic variables that have been unrecognized until now, apparently because of the relatively modest range of their photometric variations.