- ID:
- ivo://CDS.VizieR/J/MNRAS/474/1307
- Title:
- S0 galaxies morpho-kinematic properties
- Short Name:
- J/MNRAS/474/1307
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study a sample of 28 S0 galaxies extracted from the integral field spectroscopic (IFS) survey Calar Alto Legacy Integral Field Area. We combine an accurate two-dimensional (2D) multicomponent photometric decomposition with the IFS kinematic properties of their bulges to understand their formation scenario. Our final sample is representative of S0s with high stellar masses (M*/M_{sun}_>10^10^). They lay mainly on the red sequence and live in relatively isolated environments similar to that of the field and loose groups. We use our 2D photometric decomposition to define the size and photometric properties of the bulges, as well as their location within the galaxies. We perform mock spectroscopic simulations mimicking our observed galaxies to quantify the impact of the underlying disc on our bulge kinematic measurements ({nu} and v/{lambda}). We compare our bulge corrected kinematic measurements with the results from Schwarzschild dynamical modelling. The good agreement confirms the robustness of our results and allows us to use bulge deprojected values of {lambda} and v/{sigma}. We find that the photometric (n and B/T) and kinematic (v/{sigma} and {lambda}) properties of our field S0 bulges are not correlated. We demonstrate that this morpho-kinematic decoupling is intrinsic to the bulges and it is not due to projection effects. We conclude that photometric diagnostics to separate different types of bulges (disc-like versus classical) might not be useful for S0 galaxies. The morpho-kinematics properties of S0 bulges derived in this paper suggest that they are mainly formed by dissipational processes happening at high redshift, but dedicated high-resolution simulations are necessary to better identify their origin.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/886/154
- Title:
- Sgr stream K- & M-giants and BHB stars
- Short Name:
- J/ApJ/886/154
- Date:
- 07 Dec 2021 13:01:04
- Publisher:
- CDS
- Description:
- We characterize the kinematic and chemical properties of ~3000 Sagittarius (Sgr) stream stars, including K-giants, M-giants, and blue horizontal branch stars (BHBs), selected from SEGUE-2, Large Sky Area Multi-Object Fibre Spectroscopic Telescope, and Sloan Digital Sky Survey separately in Integrals-of-Motion space. The orbit of the Sgr stream is quite clear from the velocity vector in the X-Z plane. Stars traced by K-giants and M-giants show that the apogalacticon of the trailing steam is ~100kpc. The metallicity distributions of Sgr K-giants, M-giants, and BHBs indicate that the M-giants are on average the most metal-rich population, followed by K-giants and BHBs. All of the K-giants, M-giants, and BHBs indicate that the trailing arm is on average more metal-rich than the leading arm, and the K-giants show that the Sgr debris is the most metal-poor part. The {alpha}-abundance of Sgr stars exhibits a similar trend with the Galactic halo stars at lower metallicity ([Fe/H]<~-1.0dex), and then evolve down to lower [{alpha}/Fe] than disk stars at higher metallicity, which is close to the evolution pattern of the {alpha}-element of Milky Way dwarf galaxies. We find that VY and metallicity of K-giants have gradients along the direction of the line of sight from the Galactic center in the X-Z plane, and the K-giants show that VY increases with metallicity at [Fe/H]>~-1.5dex. After dividing the Sgr stream into bright and faint streams according to their locations in equatorial coordinates, the K-giants and BHBs show that the bright and faint streams present different VY and metallicities, the bright stream is on average higher in VY and metallicity than the faint stream.
- ID:
- ivo://CDS.VizieR/J/A+A/585/A84
- Title:
- Shape parameters of lensing galaxies
- Short Name:
- J/A+A/585/A84
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The luminosity profiles of galaxies acting as strong gravitational lenses can be tricky to study. Indeed, strong gravitational lensing images display several lensed components, both point-like and diffuse, around the lensing galaxy. Those objects limit the study of the galaxy luminosity to its inner parts. Therefore, the usual fitting methods perform rather badly on such images. Previous studies of strong lenses luminosity profiles using software such as like GALFIT or IMFITFITS and various PSF-determining methods have resulted in somewhat discrepant results. The present work aims at investigating the causes of those discrepancies, as well as at designing more robust techniques for studying the morphology of early-type lensing galaxies with the ability to subtract a lensed signal from their luminosity profiles. The morphology of early-type lensing galaxies with the ability to subtract a lensed signal from their luminosity profiles. Methods. We design a new method to independently measure each shape parameter, namely, the position angle, ellipticity, and half- light radius of the galaxy. Our half-light radius measurement method is based on an innovative scheme for computing isophotes that is well suited to measuring the morphological properties of gravitational lensing galaxies. Its robustness regarding various specific aspects of gravitational lensing image processing is analysed and tested against GALFIT. It is then applied to a sample of systems from the CASTLES database.
- ID:
- ivo://CDS.VizieR/J/A+AS/114/21
- Title:
- Shapley-Ames Galaxies at 2.8cm
- Short Name:
- J/A+AS/114/21
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present measurements of the radio continuum emission at 2.8 cm of a nearly complete sample of spiral galaxies. The sample consists of the Shapley-Ames galaxies north of {delta}=-25deg and brighter than B_T_=+12. The large, nearby galaxies were not observed during the survey, but measured with high sensitivity in individual projects. The radioweak galaxies were also excluded. The observational results and the derived flux densities are given and compared with that of other observations. Pecularities of the radio emission of individual galaxies are discussed.
- ID:
- ivo://CDS.VizieR/J/ApJ/762/46
- Title:
- SHARDS: GOODS-N spectrophotometry survey
- Short Name:
- J/ApJ/762/46
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the Survey for High-z Absorption Red and Dead Sources (SHARDS), an ESO/GTC Large Program carried out using the OSIRIS instrument on the 10.4m Gran Telescopio Canarias (GTC). SHARDS is an ultra-deep optical spectro-photometric survey of the GOODS-N field covering 130arcmin2 at wavelengths between 500 and 950nm with 24 contiguous medium-band filters (providing a spectral resolution R~50). The data reach an AB magnitude of 26.5 (at least at a 3{sigma} level) with sub-arcsec seeing in all bands. SHARDS' main goal is to obtain accurate physical properties of intermediate- and high-z galaxies using well-sampled optical spectral energy distributions (SEDs) with sufficient spectral resolution to measure absorption and emission features, whose analysis will provide reliable stellar population and active galactic nucleus (AGN) parameters. Among the different populations of high-z galaxies, SHARDS' principal targets are massive quiescent galaxies at z>1, whose existence is one of the major challenges facing current hierarchical models of galaxy formation. In this paper, we outline the observational strategy and include a detailed discussion of the special reduction and calibration procedures which should be applied to the GTC/OSIRIS data. An assessment of the SHARDS data quality is also performed. We present science demonstration results on the detection and study of emission-line galaxies (star-forming objects and AGNs) at z=0-5. We also analyze the SEDs for a sample of 27 quiescent massive galaxies with spectroscopic redshifts in the range 1.0<z<~1.4.
- ID:
- ivo://CDS.VizieR/J/A+A/344/943
- Title:
- Sh 138 BVRIJHK photometry
- Short Name:
- J/A+A/344/943
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a photometric and spectroscopic study of the compact HII region Sh 138 and its associated stellar cluster. The positions and BVRIJHK magnitudes are obtained for more than 400 stars over a field of about 4' square centred on the HII region. Sh 138 is excited by a cluster of young massive stars. At the cluster's very centre are at least four O-B2 stars separated by less than 4". The brightest of these, both in the visible and the near infrared, exhibits a spectrum similar to those of the more massive Herbig Ae/Be stars. This star, our No. 183, is overluminous by a factor of 2.5 in the visible and four in the near IR with respect to the O9.5V star required to account for the ionization level of the HII region. However star 183's position in the J-H versus H-K diagram does not indicate a near-IR excess. We suggest that this star is a young massive object belonging to a binary or multiple system. The stellar cluster associated with Sh 138 is very reminiscent of the Orion Trapezium cluster: it is centrally peaked around several massive stars, and is dense - more than 550stars/pc^2^ at its centre. The visual extinction in the cluster varies between 5mag and more than 35mag; large variations are observed over very small scales (for example, more than 20mag over less than 4" among the central massive stars).
- ID:
- ivo://CDS.VizieR/J/ApJS/213/35
- Title:
- SHELS: complete galaxy redshift survey for R<=20.6
- Short Name:
- J/ApJS/213/35
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The SHELS (Smithsonian Hectospec Lensing Survey) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey to a limiting R=20.6. Here we describe the redshift survey of the F2 field (RA_J2000_=09h19m32.4s and DE_J2000_=+30{deg}00'00"). The survey includes 16294 new redshifts measured with the Hectospec on the MMT. The resulting survey of the 4deg^2^ F2 field is 95% complete to R=20.6, currently the densest survey to this magnitude limit. The median survey redshift is z=0.3; the survey provides a view of structure in the range 0.1<~z<~0.6. An animation displays the large-scale structure in the survey region. We provide a redshift, spectral index D_n_4000, and stellar mass for each galaxy in the survey. We also provide a metallicity for each galaxy in the range 0.2<z<0.38. To demonstrate potential applications of the survey, we examine the behavior of the index D_n_4000 as a function of galaxy luminosity, stellar mass, and redshift. The known evolutionary and stellar mass dependent properties of the galaxy population are cleanly evident in the data. We also show that the mass-metallicity relation previously determined from these data is robust to the analysis approach.
- ID:
- ivo://CDS.VizieR/J/ApJ/872/91
- Title:
- SHELS galaxy sizes using Subaru/HSC imaging
- Short Name:
- J/ApJ/872/91
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We explore the relationships between size, stellar mass, and average stellar population age (indicated by D_n_4000 indices) for a sample of ~11000 intermediate-redshift galaxies from the SHELS spectroscopic survey (Geller+ 2014, J/ApJS/213/35) augmented by high-resolution Subaru Telescope Hyper Suprime-Cam imaging. In the redshift interval 0.1<z<0.6, star-forming galaxies are on average larger than their quiescent counterparts. The mass-complete sample of ~3500M_*_>10^10^M_{sun}_ quiescent galaxies shows that the average size of a 10^11^M_{sun}_ quiescent galaxy increases by <~25% from z~0.6 to z~0.1. This growth rate is a function of stellar mass: the most massive (M_*_>10^10^M_{sun}_) galaxies grow significantly more slowly in size than quiescent systems an order of magnitude less massive that grow by 70% in the 0.1<~z<~0.3 redshift interval. For M_*_<10^11^M_{sun}_ galaxies, age and size are anticorrelated at fixed mass; more massive quiescent systems show no significant trend in size with average stellar population age. The evolution in absolute and fractional abundances of quiescent systems at intermediate redshift are also a function of galaxy stellar mass. The suite of evolutionary trends suggests that galaxies more massive than ~10^11^M_{sun}_ have mostly assembled their mass by z~0.6. Quiescent galaxies with lower stellar masses show more complex evolution that is characterized by a combination of individual quiescent galaxy size growth (through mergers) and an increase in the size of newly quenched galaxies joining the population at later times (progenitor bias). The low-mass population (M_*_~10^10^M_{sun}_) grows predominantly as a result of progenitor bias. For more massive (M_*_~5x10^10^M_{sun}_) quiescent galaxies, (predominantly minor) mergers and progenitor bias make more comparable contributions to the size growth. At intermediate redshift, quiescent size growth is mass-dependent; the most massive (M_*_>10^10^M_{sun}_) galaxies experience the least rapid increase in size from z~0.6 to z~0.1.
- ID:
- ivo://CDS.VizieR/J/ApJS/224/11
- Title:
- SHELS: redshift survey of the F1 DLS field
- Short Name:
- J/ApJS/224/11
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Smithsonian Hectospec Lensing Survey (SHELS) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey (DLS). Both fields are more than 94% complete to a Galactic extinction corrected R_0_=20.2. Here, we describe the redshift survey of the F1 field centered at RA=00:53:25.3 and DEC=12:33:55 (J2000); like F2, the F1 field covers ~4deg^2^. The redshift survey of the F1 field includes 9426 new galaxy redshifts measured with Hectospec on the MMT (published here). As a guide to future uses of the combined survey, we compare the mass metallicity relation and the distributions of D_n_4000 as a function of stellar mass and redshift for the two fields. The mass-metallicity relations differ by an insignificant 1.6{sigma}. For galaxies in the stellar mass range 10^10^-10^11^M_{sun}_, the increase in the star-forming fraction with redshift is remarkably similar in the two fields. The seemingly surprising 31%-38% difference in the overall galaxy counts in F1 and F2 is probably consistent with the expected cosmic variance given the subtleties of the relative systematics in the two surveys. We also review the DLS cluster detections in the two fields: poorer photometric data for F1 precluded secure detection of the single massive cluster at z=0.35 that we find in SHELS. Taken together, the two fields include 16055 redshifts for galaxies with R_0_<=20.2 and 20754 redshifts for galaxies with R<=20.6. These dense surveys in two well-separated fields provide a basis for future investigations of galaxy properties and large-scale structure.
- ID:
- ivo://CDS.VizieR/J/ApJ/883/88
- Title:
- Short-duration stellar flares from GALEX & Kepler
- Short Name:
- J/ApJ/883/88
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on a population of short-duration near-ultraviolet (NUV) flares in stars observed by the Kepler and Galaxy Evolution Explorer (GALEX) missions. We analyzed the NUV light curves of 34276 stars observed from 2009 to 2013 by both the GALEX (NUV) and Kepler (optical) space missions with the eventual goal of investigating multiwavelength flares. From the GALEX data, we constructed light curves with a 10s cadence, and we ultimately detected 1904 short-duration flares on 1021 stars. The vast majority (94.5%) of these flares have durations less than 5 minutes, with flare flux enhancements above the quiescent flux level ranging from 1.5 to 1700. The flaring stars are primarily solar-like, with Teff ranging from 3000 to 11000K and radii between 0.5 and 15R_{sun}_. This set of flaring stars is almost entirely distinct from that of previous flare surveys of Kepler data and indicates a previously undetected collection of small flares contained within the Kepler sample. The range in flare energies spans 1.8x10^32^-8.9x10^37^erg, with associated relative errors spanning 2%-87%. The flare frequency distribution by energy follows a power law with index {alpha}=1.72+/-0.05, consistent with results of other solar and stellar flare studies at a range of wavelengths. This supports the idea that the NUV flares we observed are governed by the same physical processes present in solar and optical flares. The relationship between flare duration and associated flare energy extends results found for solar and stellar white-light flares, and suggests that these flares originate in regions with magnetic field strengths of several hundred Gauss, and length scales of the order of 10^10^cm.