- ID:
- ivo://CDS.VizieR/J/AJ/135/1837
- Title:
- Spectroscopy in A2199 and Virgo clusters
- Short Name:
- J/AJ/135/1837
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report a new determination of the faint end of the galaxy luminosity function (LF) in the nearby clusters Abell 2199 and Virgo using data from the Sloan Digital Sky Survey (SDSS) and the Hectospec multifiber spectrograph on the MMT. The luminosity function of A2199 is consistent with a single Schechter function to M_r_=-15.6+5log(h_70_) with a faint-end slope of alpha=-1.13+/-0.07 (statistical). The LF in Virgo extends to M_r_~-13.5~M*+8 and has a slope of alpha=-1.28+/-0.06 (statistical).
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/159/24
- Title:
- Spectroscopy & Kepler data of the EB star V404 Lyr
- Short Name:
- J/AJ/159/24
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first high-resolution spectra for the eclipsing binary V404Lyr showing {gamma}Dor pulsations, which we use to study its absolute properties. By fitting models to the disentangling spectrum of the primary star, we found that it has an effective temperature of T_eff,1_=7330{+/-}150K and a rotational velocity of v_1_sini=148{+/-}18km/s. The simultaneous analysis of our double-lined radial velocities and the pulsation-subtracted Kepler data gives us accurate stellar and system parameters of V404Lyr. The masses, radii, and luminosities are M1=2.17{+/-}0.06M_{sun}_, R1=1.91{+/-}0.02R_{sun}_, and L1=9.4{+/-}0.8L_{sun}_ for the primary, and M2=1.42{+/-}0.04M_{sun}_, R2=1.79{+/-}0.02R_{sun}_, and L2=2.9{+/-}0.2L_{sun}_ for the secondary. The tertiary component orbiting the eclipsing pair has a mass of M_3b_=0.71{+/-}0.15M_{sun}_ in an orbit of P_3b_=642{+/-}3d, e_3b_=0.21{+/-}0.04, and a_3b_=509{+/-}2R_{sun}_. The third light of l_3_=4.1{+/-}0.2% could be partly attributable to the K-type circumbinary object. By applying a multiple frequency analysis to the eclipse-subtracted light residuals, we detected 45 frequencies with signal-to-noise amplitude ratios larger than 4.0. Identified as independent pulsation modes, seven frequencies (f_1_-f_6_, f_9_), their new pulsation constants, and the location in the Hertzsprung-Russell diagram indicate that the pulsating primary is a {gamma}Dor-type variable star.
- ID:
- ivo://CDS.VizieR/J/ApJ/834/9
- Title:
- Spectroscopy obs. of LeoA, Aqr & Sgr dwarf gal.
- Short Name:
- J/ApJ/834/9
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Keck/DEIMOS spectroscopy of individual stars in the relatively isolated Local Group dwarf galaxies Leo A, Aquarius, and the Sagittarius dwarf irregular galaxy. The three galaxies-but especially Leo A and Aquarius-share in common delayed star formation histories (SFHs) relative to many other isolated dwarf galaxies. The stars in all three galaxies are supported by dispersion. We found no evidence of stellar velocity structure, even for Aquarius, which has rotating HI gas. The velocity dispersions indicate that all three galaxies are dark-matter-dominated, with dark-to-baryonic mass ratios ranging from 4.4_-0.8_^+1.0^ (SagDIG) to 9.6_-1.8_^+2.5^ (Aquarius). Leo A and SagDIG have lower stellar metallicities than Aquarius, and they also have higher gas fractions, both of which would be expected if Aquarius were further along in its chemical evolution. The metallicity distribution of Leo A is inconsistent with a closed or leaky box model of chemical evolution, suggesting that the galaxy was pre-enriched or acquired external gas during star formation. The metallicities of stars increased steadily for all three galaxies, but possibly at different rates. The [{alpha}/Fe] ratios at a given [Fe/H] are lower than that of the Sculptor dwarf spheroidal galaxy, which indicates more extended SFHs than Sculptor, consistent with photometrically derived SFHs. Overall, the bulk kinematic and chemical properties for the late-forming dwarf galaxies do not diverge significantly from those of less delayed dwarf galaxies, including dwarf spheroidal galaxies.
- ID:
- ivo://CDS.VizieR/J/ApJ/853/36
- Title:
- Spectroscopy obs. of 20 Planck gal. cluster cand.
- Short Name:
- J/ApJ/853/36
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Gemini and Keck spectroscopic redshifts and velocity dispersions for 20 clusters detected via the Sunyaev-Zel'dovich (SZ) effect by the Planck space mission, with estimated masses in the range 2.3x10^14^M_{sun}_<M_500_^Pl^<9.4x10^14^M_{sun}_. Cluster members were selected for spectroscopic follow-up with Palomar, Gemini, and Keck optical and (in some cases) infrared imaging. Seven cluster redshifts were measured for the first time with this observing campaign, including one of the most distant Planck clusters confirmed to date, at z=0.782+/-0.010, PSZ2 G085.95+25.23. The spectroscopic redshift catalogs of members of each confirmed cluster are included as online tables. We show the galaxy redshift distributions and measure the cluster velocity dispersions. The cluster velocity dispersions obtained in this paper were used in a companion paper to measure the Planck mass bias and to constrain the cluster velocity bias.
- ID:
- ivo://CDS.VizieR/J/ApJ/862/174
- Title:
- Spectroscopy obs. of RAVE J094921.8-161722
- Short Name:
- J/ApJ/862/174
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a high-resolution (R~35000), high signal-to-noise ratio (S/N>200) Magellan/MIKE spectrum of the star RAVE J094921.8-161722, a bright (V=11.3) metal-poor red giant star with [Fe/H]=-2.2, identified as a carbon-enhanced metal-poor (CEMP) star from the RAVE survey. We report its detailed chemical abundance signature of light fusion elements and heavy neutron-capture elements. We find J0949-1617 to be a CEMP star with s-process enhancement that must have formed from gas enriched by a prior r-process event. Light neutron-capture elements follow a low-metallicity s-process pattern, while the heavier neutron-capture elements above Eu follow an r-process pattern. The Pb abundance is high, in line with an s-process origin. Thorium is also detected, as expected from an r-process origin, as Th is not produced in the s-process. We employ nucleosynthesis model predictions that take an initial r-process enhancement into account, and then determine the mass transfer of carbon and s-process material from a putative more massive companion onto the observed star. The resulting abundances agree well with the observed pattern. We conclude that J0949-1617 is the first bonafide CEMP-r+s star identified. This class of objects has previously been suggested to explain stars with neutron-capture element patterns that originate from neither the r- nor the s-process alone. We speculate that J0949-1617 formed in an environment similar to those of ultra-faint dwarf galaxies like TucanaIII and ReticulumII, which were enriched in r-process elements by one or multiple neutron star mergers at the earliest times.
- ID:
- ivo://CDS.VizieR/J/ApJ/700/1216
- Title:
- Spectroscopy of Be stars in open clusters
- Short Name:
- J/ApJ/700/1216
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We recently discovered a large number of highly active Be stars in the open cluster NGC 3766, making it an excellent location to study the formation mechanism of Be star disks. To explore whether similar disk appearances and/or disappearances are common among the Be stars in other open clusters, we present here multiple epochs of H{alpha} spectroscopy for 296 stars in eight open clusters. We identify 12 new transient Be stars and confirm 17 additional Be stars with relatively stable disks. By comparing the H{alpha} equivalent widths to the photometric y-H{alpha} colors, we present a method to estimate the strength of the H{alpha} emission when spectroscopy is not available. For a subset of 128 stars in four open clusters, we also use blue optical spectroscopy and available Stromgren photometry to measure their projected rotational velocities, effective temperatures, and polar surface gravities. We combine our Be star detections from these four clusters to investigate physical differences between the transient Be stars, stable Be stars, and normal B-type stars with no line emission. Both types of Be stars are faster rotating populations than normal B-type stars, and we find no significant physical differences between the transient and stable Be stars in our sample.
- ID:
- ivo://CDS.VizieR/J/AJ/145/102
- Title:
- Spectroscopy of bright M dwarfs in the northern sky
- Short Name:
- J/AJ/145/102
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a spectroscopic catalog of the 1564 brightest (J<9) M dwarf candidates in the northern sky, as selected from the SUPERBLINK proper motion catalog. Observations confirm 1408 of the candidates to be late-K and M dwarfs with spectral subtypes K7-M6. From the low ({mu}>40mas/yr) proper motion limit and high level of completeness of the SUPERBLINK catalog in that magnitude range, we estimate that our spectroscopic census most likely includes >90% of all existing, northern-sky M dwarfs with apparent magnitude J<9. Only 682 stars in our sample are listed in the Third Catalog of Nearby Stars (CNS3); most others are relative unknowns and have spectroscopic data presented here for the first time. Spectral subtypes are assigned based on spectral index measurements of CaH and TiO molecular bands; a comparison of spectra from the same stars obtained at different observatories, however, reveals that spectral band index measurements are dependent on spectral resolution, spectrophotometric calibration, and other instrumental factors. As a result, we find that a consistent classification scheme requires that spectral indices be calibrated and corrected for each observatory/instrument used. After systematic corrections and a recalibration of the subtype-index relationships for the CaH2, CaH3, TiO5, and TiO6 spectral indices, we find that we can consistently and reliably classify all our stars to a half-subtype precision. The use of corrected spectral indices further requires us to recalibrate the {zeta} parameter, a metallicity indicator based on the ratio of TiO and CaH optical bandheads. However, we find that our {zeta} values are not sensitive enough to diagnose metallicity variations in dwarfs of subtypes M2 and earlier (+/-0.5dex accuracy) and are only marginally useful at later M3-M5 subtypes (+/-0.2dex accuracy). Fits of our spectra to the Phoenix atmospheric model grid are used to estimate effective temperatures. These suggest the existence of a plateau in the M1-M3 subtype range, in agreement with model fits of infrared spectra but at odds with photometric determinations of T_eff_. Existing geometric parallax measurements are extracted from the literature for 624 stars, and are used to determine spectroscopic and photometric distances for all the other stars. Active dwarfs are identified from measurements of H{alpha} equivalent widths, and we find a strong correlation between H{alpha} emission in M dwarfs and detected X-ray emission from ROSAT and/or a large UV excess in the GALEX point source catalog. We combine proper motion data and photometric distances to evaluate the (U, V, W) distribution in velocity space, which is found to correlate tightly with the velocity distribution of G dwarfs in the solar neighborhood. However, active stars show a smaller dispersion in their space velocities, which is consistent with those stars being younger on average. Our catalog will be most useful to guide the selection of the best M dwarf targets for exoplanet searches, in particular those using high-precision radial velocity measurements.
- ID:
- ivo://CDS.VizieR/J/AJ/149/103
- Title:
- Spectroscopy of candidate YSOs in Serpens
- Short Name:
- J/AJ/149/103
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have completed an optical spectroscopic survey of a sample of candidate young stars in the Serpens Main star-forming region selected from deep B, V, and R band images. While infrared, X-ray, and optical surveys of the cloud have identified many young stellar objects (YSOs), these surveys have been biased toward particular stages of pre-main sequence evolution. We have obtained over 700 moderate resolution optical spectra that, when combined with published data, have led to the identification of 63 association members based on the presence of H{alpha} in emission, lithium absorption, X-ray emission, a mid-infrared excess, and/or reflection nebulosity. Twelve YSOs are identified based on the presence of lithium absorption alone. An additional 16 objects are classified as possible association members and their pre-main sequence nature is in need of confirmation. Spectral types along with V and R band photometry were used to derive effective temperatures and bolometric luminosities for association members to compare with theoretical tracks and isochrones for pre-main sequence stars. An average age of 2Myr is derived for this population. When compared to simulations, there is no obvious evidence for an age spread when considering the major sources of uncertainties in the derived luminosities. However when compared to the young cluster in Ophiuchus, the association members in Serpens appear to have a larger spread in luminosities and hence ages which could be intrinsic to the region or the result of a foreground population of YSOs associated with the Aquila Rift. Modeling of the spectral energy distributions from optical through mid-infrared wavelengths has revealed three new transition disk objects, making a total of six in the cluster. Echelle spectra for a subset of these sources enabled estimates of vsini for seven association members. Analysis of gravity-sensitive lines in the echelle and moderate resolution spectra of the association members indicate surface gravities consistent with dwarf or sub-giant stars.
- ID:
- ivo://CDS.VizieR/J/ApJ/714/1521
- Title:
- Spectroscopy of galaxies around distant QSOs
- Short Name:
- J/ApJ/714/1521
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report results from a survey of MgII absorbers in the spectra of background quasi-stellar objects (QSOs) that are within close angular distances to a foreground galaxy at z<0.5, using the Magellan Echellette Spectrograph. We have established a spectroscopic sample of 94 galaxies at a median redshift of <z>=0.24 in fields around 70 distant background QSOs (z_QSO_>0.6), 71 of which are in an "isolated" environment with no known companions and located at {rho}<~120h^-1^kpc from the line of sight of a background QSO. The rest-frame absolute B-band magnitudes span a range from M_B_-5logh=-16.4 to M_B_-5logh=-21.4 and rest-frame B_AB_-R_AB_ colors range from B_AB_-R_AB_~0 to B_AB_-R_AB_~1.5. Of these "isolated" galaxies, we find that 47 have corresponding MgII absorbers in the spectra of background QSOs and rest-frame absorption equivalent width W_r_(2796)=0.1-2.34{AA}, and 24 do not give rise to MgII absorption to sensitive upper limits.
- ID:
- ivo://CDS.VizieR/J/AJ/154/251
- Title:
- Spectroscopy of galaxies in z=0.2-0.9 clusters
- Short Name:
- J/AJ/154/251
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an analysis of stellar populations in passive galaxies in seven massive X-ray clusters at z=0.19-0.89. Based on absorption-line strengths measured from our high signal-to-noise spectra, the data support primarily passive evolution of the galaxies. We use the scaling relations between velocity dispersions and the absorption-line strengths to determine representative mean line strengths for the clusters. From the age determinations based on the line strengths (and stellar population models), we find a formation redshift of z_form_=1.96_-0.19_^+0.24^. Based on line strength measurements from high signal-to-noise composite spectra of our data, we establish the relations between velocity dispersions, ages, metallicities [M/H], and abundance ratios [{alpha}/Fe] as a function of redshift. The [M/H]-velocity dispersion and [{alpha}/Fe]-velocity dispersion relations are steep and tight. The age-velocity dispersion relation is flat, with zero-point changes reflecting passive evolution. The scatter in all three parameters is within 0.08-0.15 dex at fixed velocity dispersions, indicating a large degree of synchronization in the evolution of the galaxies. We find an indication of cluster-to-cluster differences in metallicities and abundance ratios. However, variations in stellar populations with the cluster environment can only account for a very small fraction of the intrinsic scatter in the scaling relations. Thus, within these very massive clusters, the main driver of the properties of the stellar populations in passive galaxies appears to be the galaxy velocity dispersion.