- ID:
- ivo://CDS.VizieR/J/ApJ/893/96
- Title:
- CHAOS IV: NGC3184 LBT obs. & 3 other gal. abundances
- Short Name:
- J/ApJ/893/96
- Date:
- 07 Mar 2022 07:28:28
- Publisher:
- CDS
- Description:
- The chemical abundances of spiral galaxies, as probed by HII regions across their disks, are key to understanding the evolution of galaxies over a wide range of environments. We present Large Binocular Telescope/Multi-Object Double Spectrographs spectra of 52 HII regions in NGC 3184 as part of the CHemical Abundances Of Spirals (CHAOS) project. We explore the direct-method gas-phase abundance trends for the first four CHAOS galaxies, using temperature measurements from one or more auroral-line detections in 190 individual HII regions. We find that the dispersion in T_e_-T_e_ relationships is dependent on ionization, as characterized by F_{lambda}5007_/F_{lambda}3727_, and so we recommend ionization-based temperature priorities for abundance calculations. We confirm our previous results that [NII] and [SIII] provide the most robust measures of electron temperature in low-ionization zones, while [OIII] provides reliable electron temperatures in high-ionization nebula. We measure relative and absolute abundances for O, N, S, Ar, and Ne. The four CHAOS galaxies marginally conform with a universal O/H gradient, as found by empirical integral field unit studies when plotted relative to effective radius. However, after adjusting for vertical offsets, we find a tight universal N/O gradient of {alpha}_N/O_=-0.33dex/R_e_ with {sigma}_tot._=0.08 for R_g_/R_e_<2.0, where N is dominated by secondary production. Despite this tight universal N/O gradient, the scatter in the N/O-O/H relationship is significant. Interestingly, the scatter is similar when N/O is plotted relative to O/H or S/H. The observable ionic states of S probe lower ionization and excitation energies than O, which might be more appropriate for characterizing abundances in metal-rich HII regions.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/159/281
- Title:
- Characteristics of 335 KOI stars
- Short Name:
- J/AJ/159/281
- Date:
- 09 Dec 2021
- Publisher:
- CDS
- Description:
- We propose several descriptive measures to characterize the arrangements of planetary masses, periods, and mutual inclinations within exoplanetary systems. These measures are based on complexity theory and capture the global, system-level trends of each architecture. Our approach considers all planets in a system simultaneously, facilitating both intrasystem and intersystem analysis. We find that based on these measures, Kepler's high-multiplicity (N>=3) systems can be explained if most systems belong to a single intrinsic population, with a subset of high-multiplicity systems (~20%) hosting additional, undetected planets intermediate in period between the known planets. We confirm prior findings that planets within a system tend to be roughly the same size and approximately coplanar. We find that forward modeling has not yet reproduced the high degree of spacing similarity (in log- period) actually seen in the Kepler data. Although our classification scheme was developed using compact Kepler multis as a test sample, our methods can be immediately applied to any other population of exoplanetary systems. We apply this classification scheme to 1- quantify the similarity between systems, 2- resolve observational biases from physical trends, 3- identify which systems to search for additional planets and where to look for these planets.
- ID:
- ivo://CDS.VizieR/J/A+A/311/484
- Title:
- CH Cyg 1991-1995 UBV-JHKLM photometry
- Short Name:
- J/A+A/311/484
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new UBV-JHKLM photoelectric photometry of the symbiotic binary CH Cyg covering the period 1991-1995, which extend our monitoring started in 1978. The large and highly homogeneous set of data that we have accumulated in the last eighteen years is reviewed and discussed. By July 1995 the outbursting component has returned to the same conditions which characterized the previous minimum in 1988-1989. In J, H, K CH Cyg shows a long term modulation that can be fitted with a sinusoid of 32 year period. It may be a dust obscuration event similar to those known to undergo in symbiotic Miras. The cool giant exhibits in the infrared a variability of large amplitude, best described as chaotic-like. The only detectable periodicity is 1980 days. The photometric properties of the cool giant denounce a clear partnership with the spheroidal component of the Galaxy. This lowers the estimated distance to ~120pc and the cool giant mass to ~1.0M_{sun}_. Several episodes of dust condensation in the wind of the giant are identified. One is in full progress at the time of writing. The dust condensation temperature is found to be ~1,000K. The condensed dust grains absorb selectively in the infrared but are large enough to absorb neutrally in the UBV wavelength region. There is no evidence for dust condensing in an hypothetical wind or ejected material from the outbursting white dwarf. The recently proposed triple-star model for CH Cyg is confronted with photometric observations. Several serious discrepancies are outlined and individually discussed. We believe that, without additional evidences and careful modelling, the triple star model cannot survive the comparison with the photometric observations. The low amplitude (2.6km/s) and periodic (756 days) radial velocity variations apparently do not trace an orbital motion. They may be due to one of the many superimposed pulsation modes of the highly variable M giant.
- ID:
- ivo://CDS.VizieR/J/A+A/440/321
- Title:
- Chemical abundances in 43 metal-poor stars
- Short Name:
- J/A+A/440/321
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have derived abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Fe, Ni and Ba for 43 metal-poor field stars in the solar neighbourhood, most of them subgiants or turn-off-point stars, with iron abundances [Fe/H] ranging from -0.4 to -3.0. About half of this sample has not been analysed spectroscopically in detail before. Effective temperatures were estimated from uvby photometry, and surface gravities primarily from Hipparcos parallaxes. The analysis is differential relative to the Sun, and carried out with plane-parallel MARCS models. Various sources of error are discussed and found to contribute a total error of about 0.1-0.2dex for most elements, while relative abundances, such as [Ca/Fe], are most probably more accurate. For the oxygen abundances, determined in an NLTE analysis of the 7774{AA} triplet lines, the errors may be somewhat larger.
- ID:
- ivo://CDS.VizieR/J/AJ/161/183
- Title:
- Chemical abundances in 52 M-giant stars
- Short Name:
- J/AJ/161/183
- Date:
- 18 Jan 2022
- Publisher:
- CDS
- Description:
- We measured ^35^Cl abundances in 52-M giants with metallicities in the range -0.5<[Fe/H]<0.12. Abundances and atmospheric parameters were derived using infrared spectra from CSHELL on the NASA Infrared Telescope Facility and from optical echelle spectra. We measured Cl abundances by fitting a H^35^Cl molecular feature at 3.6985{mu}m with synthetic spectra. We also measured the abundances of O, Ca, Ti, and Fe using atomic absorption lines. We find that the [Cl/Fe] ratio for our stars agrees with chemical evolution models of Cl, and the [Cl/Ca] ratio is broadly consistent with the solar ratio over our metallicity range. Both indicate that Cl is primarily made in core-collapse supernovae with some contributions from Type Ia supernovae. We suggest that other potential nucleosynthesis processes, such as the {nu}-process, are not significant producers of Cl. Finally, we also find our Cl abundances are consistent with HII and planetary nebular abundances at a given oxygen abundance, although there is scatter in the data.
- ID:
- ivo://CDS.VizieR/J/ApJ/824/5
- Title:
- Chemical abundances in NGC 5024 (M53)
- Short Name:
- J/ApJ/824/5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin-Indiana-Yale-NOAO 3.5m telescope. M53 is of interest because previous studies based on the morphology of the cluster's horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the second generation (SG) stars. Our sample has an average [Fe/H]=-2.07 with a standard deviation of 0.07dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na-O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.
- ID:
- ivo://CDS.VizieR/J/AJ/160/181
- Title:
- Chemical abundances in red giants with Magellan
- Short Name:
- J/AJ/160/181
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present high-resolution Magellan/MIKE spectroscopy of 42 red giant stars in seven stellar streams confirmed by the Southern Stellar Stream Spectroscopic Survey (S5): ATLAS, Aliqa Uma, Chenab, Elqui, Indus, Jhelum, and Phoenix. Abundances of 30 elements have been derived from over 10000 individual line measurements or upper limits using photometric stellar parameters and a standard LTE analysis. This is currently the most extensive set of element abundances for stars in stellar streams. Three streams (ATLAS, Aliqa Uma, and Phoenix) are disrupted metal-poor globular clusters, although only weak evidence is seen for the light-element anticorrelations commonly observed in globular clusters. Four streams (Chenab, Elqui, Indus, and Jhelum) are disrupted dwarf galaxies, and their stars display abundance signatures that suggest progenitors with stellar masses ranging from 106 to 107M{sun}. Extensive description is provided for the analysis methods, including the derivation of a new method for including the effect of stellar parameter correlations on each star's abundance and uncertainty. This paper includes data gathered with the 6.5m Magellan Telescopes located at Las Campanas Observatory, Chile.
- ID:
- ivo://CDS.VizieR/J/ApJ/897/183
- Title:
- Chemical abundances of 3 stars in Grus II galaxy
- Short Name:
- J/ApJ/897/183
- Date:
- 15 Mar 2022 04:18:06
- Publisher:
- CDS
- Description:
- We present a detailed abundance analysis of the three brightest member stars at the top of the giant branch of the ultrafaint dwarf (UFD) galaxy GrusII. All stars exhibit a higher than expected [Mg/Ca] ratio compared to metal-poor stars in other UFD galaxies and in the Milky Way (MW) halo. Nucleosynthesis in high-mass (>=20M{sun}) core-collapse supernovae has been shown to create this signature. The abundances of this small sample (three) stars suggests the chemical enrichment of GrusII could have occurred through substantial high-mass stellar evolution, and is consistent with the framework of a top-heavy initial mass function. However, with only three stars it cannot be ruled out that the abundance pattern is the result of a stochastic chemical enrichment at early times in the galaxy. The most metal-rich of the three stars also possesses a small enhancement in rapid neutron-capture (r-process) elements. The abundance pattern of the r-process elements in this star matches the scaled r-process pattern of the solar system and r-process enhanced stars in other dwarf galaxies and in the MW halo, hinting at a common origin for these elements across a range of environments. All current proposed astrophysical sites of r-process element production are associated with high- mass stars, thus the possible top-heavy initial mass function of GrusII would increase the likelihood of any of these events occurring. The time delay between the {alpha} and r-process element enrichment of the galaxy favors a neutron star merger as the origin of the r-process elements in GrusII.
- ID:
- ivo://CDS.VizieR/J/A+A/326/751
- Title:
- Chemical composition of halo and disk stars
- Short Name:
- J/A+A/326/751
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Table A1 lists the Stromgren photometry together with color excesses, E(b-y), photometric metallicities, [Fe/H] , calculated from the calibrations of Schuster & Nissen (1989A&A...221...65S), and absolute magnitudes, M(V), and distances derived with the equations of Nissen & Schuster (1991A&A...251..457N) using the photometric metallicities. Table A2 contains coordinates, proper motions and radial velocities for the program stars as well as distances calculated from the calibrations Nissen & Schuster (1991A&A...251..457N) using the spectroscopic metallicities scaled to our photometric [Fe/H] system. Table A3 gives a list of the 209 spectral lines, which were analyzed, arranged element by element. The table contains the wavelength, the excitation potential of the lower level corresponding to the line, the gf-value, the enhancement factor of the classical van der Waals damping constant, the statistical weight of the upper level, and the equivalent widths measured for the two "standard" stars, HD 22879 and HD 76932. Table A4 contains the measured equivalent widths for all program stars. Table A5 gives abundance ratios and kinematical as well as orbital parameters for the program stars. First are given the data for the 16 disk stars, then follows the 14 halo stars.
- ID:
- ivo://CDS.VizieR/J/A+A/459/871
- Title:
- Chemically peculiar stars in the LMC
- Short Name:
- J/A+A/459/871
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present high precision photometric Delta a observations of 417 objects in NGC 2136/7 and its surrounding field, of which five turned out to be bona fide magnetic CP stars. In addition, we discovered two Be/Ae stars. This intermediate band photometric system samples the depth of the 520nm flux depression by comparing the flux at the center with the adjacent regions with bandwidths of 11nm to 23nm. The Delta a photometric system is most suitable for detecting CP2 stars with high efficiency, but is also capable of detecting a small percentage of non-magnetic CP objects. From our investigations of NGC 1711, NGC 1866, NGC 2136/7, their surroundings, and one independent field of the LMC population, we derive an occurrence of classical chemically peculiar stars of 2.2(6)% in the LMC, which is only half the value found in the Milky Way. The mass and age distribution of the photometrically detected CP stars is not different from that of similar objects in galactic open clusters.