- ID:
- ivo://CDS.VizieR/J/ApJ/883/6
- Title:
- AllWISE & NEOWISE LCs of Red MSX massive YSOs
- Short Name:
- J/ApJ/883/6
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We systematically investigate the mid-infrared (MIR; {lambda}>3{mu}m) time variability of uniformly selected ~800 massive young stellar objects (MYSOs) from the Red Midcourse Space Experiment Source survey. Out of the 806 sources, we obtain reliable 9yr long MIR magnitude variability data of 331 sources at the 3.4{mu}m (W1) and 4.6{mu}m (W2) bands by cross-matching the MYSO positions with ALLWISE and NEOWISE catalogs. After applying the variability selections using ALLWISE data, we identify five MIR-variable candidates. The light curves show various classes, with the periodic, plateau-like, and dipper features. Out of the obtained two color-magnitude diagram of W1 and W1-W2, one shows "bluer when brighter and redder when fainter" trends in variability, suggesting change in extinction or accretion rate. Finally, our results show that G335.9960-00.8532 has a periodic light curve, with an ~690d cycle. Spectral energy density model fitting results indicate that G335.9960-00.8532 is a relatively evolved MYSO; thus, we may be witnessing the very early stages of a hyper- or ultra-compact HII region, a key source for understanding MYSO evolution.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/826/16
- Title:
- ALMA and GeMS observations of the OMC1 region
- Short Name:
- J/ApJ/826/16
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present ALMA observations of the Orion Nebula that cover the OMC1 outflow region. Our focus in this paper is on compact emission from protoplanetary disks. We mosaicked a field containing ~600 near-IR-identified young stars, around which we can search for sub-millimeter emission tracing dusty disks. Approximately 100 sources are known proplyds identified with the Hubble Space Telescope. We detect continuum emission at 1mm wavelengths toward ~20% of the proplyd sample, and ~8% of the larger sample of near-IR objects. The noise in our maps allows 4{sigma} detection of objects brighter than ~1.5mJy, corresponding to protoplanetary disk masses larger than 1.5M_J_ (using standard assumptions about dust opacities and gas-to-dust ratios). None of these disks are detected in contemporaneous CO(2-1) or C^18^O(2-1) observations, suggesting that the gas-to-dust ratios may be substantially smaller than the canonical value of 100. Furthermore, since dust grains may already be sequestered in large bodies in Orion Nebula cluster (ONC) disks, the inferred masses of disk solids may be underestimated. Our results suggest that the distribution of disk masses in this region is compatible with the detection rate of massive planets around M dwarfs, which are the dominant stellar constituent in the ONC.
- ID:
- ivo://CDS.VizieR/J/MNRAS/478/1512
- Title:
- ALMA calibrator continuum observations catalog
- Short Name:
- J/MNRAS/478/1512
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalogue of ALMA flux density measurements of 754 calibrators, obtained during the majority of the ALMA science observations between 2012 August and 2017 September, for a total of 16263 observations in different bands and epochs. The flux densities were measured by reprocessing the ALMA images generated in the framework of the ALMACAL project, with a new code developed by the Italian node of the European ALMA Regional Centre. A search in the online data bases yielded redshift measurements for 589 sources (about 78 per cent of the total). Almost all sources are flat spectrum, based on their low-frequency spectral index, and have properties consistent with being blazars of different types.
- ID:
- ivo://CDS.VizieR/J/ApJ/831/125
- Title:
- ALMA 887{mu}m obs. of ChaI star-forming region
- Short Name:
- J/ApJ/831/125
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The disk mass is among the most important input parameter for every planet formation model to determine the number and masses of the planets that can form. We present an ALMA 887{mu}m survey of the disk population around objects from ~2 to 0.03M_{sun}_ in the nearby ~2Myr old Chamaeleon I star-forming region. We detect thermal dust emission from 66 out of 93 disks, spatially resolve 34 of them, and identify two disks with large dust cavities of about 45 au in radius. Assuming isothermal and optically thin emission, we convert the 887{mu}m flux densities into dust disk masses, hereafter M_dust_. We find that the M_dust_-M_*_ relation is steeper than linear and of the form M_dust_{propto}(M_*_)^1.3-1.9^, where the range in the power-law index reflects two extremes of the possible relation between the average dust temperature and stellar luminosity. By reanalyzing all millimeter data available for nearby regions in a self-consistent way, we show that the 1-3 Myr old regions of Taurus, Lupus, and Chamaeleon I share the same M_dust_-M_*_ relation, while the 10 Myr old Upper Sco association has a steeper relation. Theoretical models of grain growth, drift, and fragmentation reproduce this trend and suggest that disks are in the fragmentation-limited regime. In this regime millimeter grains will be located closer in around lower-mass stars, a prediction that can be tested with deeper and higher spatial resolution ALMA observations.
- ID:
- ivo://CDS.VizieR/J/ApJ/813/45
- Title:
- ALMA observations in z~0.5-3 quasars
- Short Name:
- J/ApJ/813/45
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Atacama Large Millimeter/submillimeter Array (ALMA) 870 {mu}m (345 GHz) data for 49 high-redshift (0.47<z<2.85), luminous (11.7<log(L_bol_/L_{sun}_)<14.2) radio-powerful active galactic nuclei (AGNs), obtained to constrain cool dust emission from starbursts concurrent with highly obscured radiative-mode black hole (BH) accretion in massive galaxies that possess a small radio jet. The sample was selected from the Wide-field Infrared Survey Explorer with extremely steep (red) mid-infrared colors and with compact radio emission from NVSS/FIRST. Twenty-six sources are detected at 870 {mu}m, and we find that the sample has large mid- to far-infrared luminosity ratios, consistent with a dominant and highly obscured quasar. The rest-frame 3 GHz radio powers are 24.7<log(P_3.0GHz_/W/Hz)<27.3 and all sources are radio-intermediate or radio-loud. BH mass estimates are 7.7<log(M_BH_/M_{sun}_)<10.2. The rest-frame 1-5 {mu}m spectral energy distributions are very similar to the "Hot DOGs" (hot dust-obscured galaxies), and steeper (redder) than almost any other known extragalactic sources. ISM masses estimated for the ALMA-detected sources are 9.9<log(M_ISM_/M_{sun}_)<11.75 assuming a dust temperature of 30 K. The cool dust emission is consistent with star formation rates reaching several thousand M_{sun}_/yr, depending on the assumed dust temperature, but we cannot rule out the alternative that the AGN powers all the emission in some cases. Our best constrained source has radiative transfer solutions with approximately equal contributions from an obscured AGN and a young (10-15 Myr) compact starburst.
- ID:
- ivo://CDS.VizieR/J/ApJ/901/74
- Title:
- ALMA obs. of UDS and GOODS-S massive galaxies
- Short Name:
- J/ApJ/901/74
- Date:
- 18 Feb 2022 09:10:36
- Publisher:
- CDS
- Description:
- We present 0.2 resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations at 870um in a stellar mass-selected sample of 85 massive (M*>10^11^M_{sun}_) star-forming galaxies (SFGs) at z=1.9-2.6 in the CANDELS/3D-Hubble Space Telescope fields of UDS and GOODS-S. We measure the effective radius of the rest-frame far-infrared (FIR) emission for 62 massive SFGs. They are distributed over wide ranges of FIR size from R_e,FIR_=0.4kpc to R_e,FIR_=6kpc. The effective radius of the FIR emission is smaller by a factor of 2.3_-1.0_^+1.9^ than the effective radius of the optical emission and is smaller by a factor of 1.9_-1.0_^+1.9^ than the half-mass radius. Taking into account potential extended components, the FIR size would change only by ~10%. By combining the spatial distributions of the FIR and optical emission, we investigate how galaxies change the effective radius of the optical emission and the stellar mass within a radius of 1kpc, M_1kpc_. The compact starburst puts most of the massive SFGs on the mass-size relation for quiescent galaxies (QGs) at z~2 within 300Myr if the current star formation activity and its spatial distribution are maintained. We also find that within 300Myr, ~38% of massive SFGs can reach the central mass of M_1kpc_=10^10.5^M_{sun}_, which is around the boundary between massive SFGs and QGs. These results suggest an outside-in transformation scenario in which a dense core is formed at the center of a more extended disk, likely via dissipative in-disk inflows. Synchronized observations at ALMA 870um and James Webb Space Telescope 3-4um will explicitly verify this scenario.
- ID:
- ivo://CDS.VizieR/J/ApJ/886/102
- Title:
- ALMA obs. of 70um dark high-mass clumps (ASHES)
- Short Name:
- J/ApJ/886/102
- Date:
- 08 Mar 2022 13:24:32
- Publisher:
- CDS
- Description:
- The ALMA Survey of 70{mu}m dark High-mass clumps in Early Stages (ASHES) is designed to systematically characterize the earliest stages and constrain theories of high-mass star formation. Twelve massive (>500M_{sun}_), cold (<=15K), 3.6-70{mu}m dark prestellar clump candidates, embedded in infrared dark clouds, were carefully selected in the pilot survey to be observed with the Atacama Large Millimeter/submillimeter Array (ALMA). We have mosaicked each clump (~1arcmin^2^) in continuum and line emission with the 12m, 7m, and Total Power (TP) arrays at 224GHz (1.34mm), resulting in ~1.2" resolution (~4800au, at the average source distance). As the first paper in the series, we concentrate on the continuum emission to reveal clump fragmentation. We detect 294 cores, from which 84 (29%) are categorized as protostellar based on outflow activity or "warm core" line emission. The remaining 210 (71%) are considered prestellar core candidates. The number of detected cores is independent of the mass sensitivity range of the observations and, on average, more massive clumps tend to form more cores. We find a large population of low-mass (<1M_{sun}_) cores and no high-mass (>30M_{sun}_) prestellar cores (maximum mass 11M_{sun}_). From the prestellar core mass function, we derive a power-law index of 1.17+/-0.10, which is slightly shallower than Salpeter. We used the minimum spanning tree (MST) technique to characterize the separation between cores and their spatial distribution, and to derive mass segregation ratios. While there is a range of core masses and separations detected in the sample, the mean separation and mass per clump are well explained by thermal Jeans fragmentation and are inconsistent with turbulent Jeans fragmentation. Core spatial distribution is well described by hierarchical subclustering rather than centrally peaked clustering. There is no conclusive evidence of mass segregation. We test several theoretical conditions and conclude that overall, competitive accretion and global hierarchical collapse scenarios are favored over the turbulent core accretion scenario.
- ID:
- ivo://CDS.VizieR/J/ApJ/839/58
- Title:
- ALMA submm galaxies multi-wavelength data
- Short Name:
- J/ApJ/839/58
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a multi-wavelength analysis of 52 submillimeter galaxies (SMGs), identified using ALMA 870{mu}m continuum imaging in a pilot program to precisely locate bright SCUBA-2-selected submillimeter sources in the UKIDSS Ultra Deep Survey (UDS) field. Using the available deep (especially near-infrared) panoramic imaging of the UDS field at optical-to-radio wavelengths we characterize key properties of the SMG population. The median photometric redshift of the bright ALMA/SCUBA-2 UDS (AS2UDS) SMGs that are detected in a sufficient number of wavebands to derive a robust photometric redshift is z=2.65+/-0.13. However, similar to previous studies, 27% of the SMGs are too faint at optical-to-near-infrared wavelengths to derive a reliable photometric redshift. Assuming that these SMGs lie at z>~3 raises the median redshift of the full sample to z=2.9+/-0.2. A subset of 23 unlensed, bright AS2UDS SMGs have sizes measured from resolved imaging of their rest- frame far-infrared emission. We show that the extent and luminosity of the far-infrared emission are consistent with the dust emission arising from regions that are, on average, optically thick at a wavelength of {lambda}_0_>=75{mu}m (1{sigma} dispersion of 55-90{mu}m). Using the dust masses derived from our optically thick spectral energy distribution models, we determine that these galaxies have a median hydrogen column density of N_H_=9.8_-0.7_^+1.4^x10^23^cm^-2^, or a corresponding median V-band obscuration of Av=540_-40_^+80^mag, averaged along the line of sight to the source of their rest-frame ~200{mu}m emission. We discuss the implications of this extreme attenuation by dust for the multi-wavelength study of dusty starbursts and reddening-sensitive tracers of star formation.
- ID:
- ivo://CDS.VizieR/J/ApJS/251/20
- Title:
- ALMA survey of Orion PGCCs (ALMASOP). II. 1.3mm
- Short Name:
- J/ApJS/251/20
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Planck Galactic Cold Clumps (PGCCs) are considered to be the ideal targets to probe the early phases of star formation. We have conducted a survey of 72 young dense cores inside PGCCs in the Orion complex with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3mm (band 6) using three different configurations (resolutions ~0.35", 1.0", and 7.0") to statistically investigate their evolutionary stages and substructures. We have obtained images of the 1.3mm continuum and molecular line emission (^12^CO, and SiO) at an angular resolution of ~0.35" (~140au) with the combined arrays. We find 70 substructures within 48 detected dense cores with median dust mass ~0.093M_{sun}_ and deconvolved size ~0.27". Dense substructures are clearly detected within the central 1000au of four candidate prestellar cores. The sizes and masses of the substructures in continuum emission are found to be significantly reduced with protostellar evolution from Class 0 to Class I. We also study the evolutionary change in the outflow characteristics through the course of protostellar mass accretion. A total of 37 sources exhibit CO outflows, and 20 (>50%) show high-velocity jets in SiO. The CO velocity extents ({Delta}Vs) span from 4 to 110km/s with outflow cavity opening angle width at 400au ranging from [{Theta}_obs_]_400_~0.6"-3.9", which corresponds to 33.4{deg}-125.7{deg}. For the majority of the outflow sources, the {Delta}Vs show a positive correlation with [{Theta}_obs_]_400_, suggesting that as protostars undergo gravitational collapse, the cavity opening of a protostellar outflow widens and the protostars possibly generate more energetic outflows.
- ID:
- ivo://CDS.VizieR/J/AJ/153/240
- Title:
- ALMA survey of protoplanetary disks in sigma Ori
- Short Name:
- J/AJ/153/240
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The {sigma} Orionis cluster is important for studying protoplanetary disk evolution, as its intermediate age (~3-5Myr) is comparable to the median disk lifetime. We use ALMA to conduct a high-sensitivity survey of dust and gas in 92 protoplanetary disks around {sigma} Orionis members with M_*_>~0.1M_{Sun}_. Our observations cover the 1.33mm continuum and several CO J=2-1 lines: out of 92 sources, we detect 37 in the millimeter continuum and 6 in ^12^CO, 3 in ^13^CO, and none in C^18^O. Using the continuum emission to estimate dust mass, we find only 11 disks with M_dust_>~10M_{Earth}_, indicating that after only a few Myr of evolution most disks lack sufficient dust to form giant planet cores. Stacking the individually undetected continuum sources limits their average dust mass to 5x lower than that of the faintest detected disk, supporting theoretical models that indicate rapid dissipation once disk clearing begins. Comparing the protoplanetary disk population in {sigma} Orionis to those of other star-forming regions supports the steady decline in average dust mass and the steepening of the M_dust_-M_*_ relation with age; studying these evolutionary trends can inform the relative importance of different disk processes during key eras of planet formation. External photoevaporation from the central O9 star is influencing disk evolution throughout the region: dust masses clearly decline with decreasing separation from the photoionizing source, and the handful of CO detections exist at projected separations of >1.5pc. Collectively, our findings indicate that giant planet formation is inherently rare and/or well underway by a few Myr of age.