- ID:
- ivo://CDS.VizieR/J/AJ/160/22
- Title:
- TOI-1235 Radial velocities & optical spectroscopy
- Short Name:
- J/AJ/160/22
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Small planets on close-in orbits tend to exhibit envelope mass fractions of either effectively zero or up to a few percent depending on their size and orbital period. Models of thermally driven atmospheric mass loss and of terrestrial planet formation in a gas-poor environment make distinct predictions regarding the location of this rocky/nonrocky transition in period-radius space. Here we present the confirmation of TOI-1235b (P=3.44days, r_p_=1.738_-0.076_^+0.087^R_{Earth}_), a planet whose size and period are intermediate between the competing model predictions, thus making the system an important test case for emergence models of the rocky/nonrocky transition around early M dwarfs (R_s_=0.630{+/-}0.015R_{sun}_, M_s_=0.640{+/-}0.016M_{sun}_). We confirm the TESS planet discovery using reconnaissance spectroscopy, ground-based photometry, high- resolution imaging, and a set of 38 precise radial velocities (RVs) from HARPS-N and HIRES. We measure a planet mass of 6.91_-0.85_^+0.75^M_{Earth}_, which implies an iron core mass fraction of 20_-12_^+15^% in the absence of a gaseous envelope. The bulk composition of TOI-1235b is therefore consistent with being Earth-like, and we constrain an H/He envelope mass fraction to be <0.5% at 90% confidence. Our results are consistent with model predictions from thermally driven atmospheric mass loss but not with gas-poor formation, suggesting that the former class of processes remains efficient at sculpting close-in planets around early M dwarfs. Our RV analysis also reveals a strong periodicity close to the first harmonic of the photometrically determined stellar rotation period that we treat as stellar activity, despite other lines of evidence favoring a planetary origin (P=21.8_-0.8_^+0.9^days, m_p_sini=13.0_-5.3_^+3.8^M_{Earth}_) that cannot be firmly ruled out by our data.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/BaltA/20/1
- Title:
- Tombaugh 5 Vilnius photometry
- Short Name:
- J/BaltA/20/1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of eight-color CCD photometry of 674 stars in the direction of the open cluster Tombaugh 5 in Camelopardalis. The stars are observed in the Vilnius system supplemented by the broad-band I filter; the field is of 22' diameter, the limiting magnitude is V=17.7mag. The catalog contains the coordinates, V magnitudes, seven color indices, two-dimensional spectral types determined from photometric parameters, interstellar extinctions and distances. The color-magnitude diagram plotted for 480 individually dereddened stars is used to identify cluster members and to determine the distance (1.74kpc) and age (200-250Myr) of the cluster. The fain test cluster stars classified are of spectral class G0. The cluster contains two blue stragglers of spectral classes B2-B4, both of them seem to be visual binaries. The extinction AV for the cluster stars is non-uniform, being spread between 2 and 3mag, with a mean value of 2.42mag. The extinction vs. distance dependence can be modeled by the Parenago exponential curve with two dust concentrations in the Camelopardalis dark clouds at about 150pc and the Cam OB1 association clouds at 0.9-1.0kpc.
- ID:
- ivo://CDS.VizieR/J/MNRAS/403/1213
- Title:
- Tracers of stellar mass-loss. I.
- Short Name:
- J/MNRAS/403/1213
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present optical and IR integrated colours and SBF magnitudes, computed from stellar population synthesis models that include emission from the dusty envelopes surrounding TP-AGB stars undergoing mass-loss. We explore the effects of varying the mass-loss rate by one order of magnitude around the fiducial value, modifying accordingly both the stellar parameters and the output spectra of the TP-AGB stars plus their dusty envelopes. The models are single burst, and range in age from a few Myr to 14Gyr, and in metallicity between Z=0.0001 and Z=0.07; they combine new calculations for the evolution of stars in the TP-AGB phase, with star plus envelope SEDs produced with the radiative transfer code DUSTY. We compare these models to optical and near-IR data of single AGB stars and Magellanic star clusters. This comparison validates the current understanding of the role of mass-loss in determining stellar parameters and spectra in the TP-AGB. However, neither broad-band colours nor SBF measurements in the optical or the near-IR can discern global changes in the mass-loss rate of a stellar population. We predict that mid-IR SBF measurements can pick out such changes, and actually resolve whether a relation between metallicity and mass-loss exists.
- ID:
- ivo://CDS.VizieR/J/ApJ/856/170
- Title:
- Tracers of stellar mass-loss. II.
- Short Name:
- J/ApJ/856/170
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- I present integrated colors and surface brightness fluctuation magnitudes in the mid-infrared (IR), derived from stellar population synthesis models that include the effects of the dusty envelopes around thermally pulsing asymptotic giant branch (TP-AGB) stars. The models are based on the Bruzual & Charlot CB* isochrones; they are single-burst, range in age from a few Myr to 14Gyr, and comprise metallicities between Z=0.0001 and Z=0.04. I compare these models to mid-IR data of AGB stars and star clusters in the Magellanic Clouds, and study the effects of varying self-consistently the mass-loss rate, the stellar parameters, and the output spectra of the stars plus their dusty envelopes. I find that models with a higher than fiducial mass-loss rate are needed to fit the mid-IR colors of "extreme" single AGB stars in the Large Magellanic Cloud. Surface brightness fluctuation magnitudes are quite sensitive to metallicity for 4.5{mu}m and longer wavelengths at all stellar population ages, and powerful diagnostics of mass-loss rate in the TP-AGB for intermediate-age populations, between 100Myr and 2-3Gyr.
- ID:
- ivo://CDS.VizieR/J/A+A/609/A53
- Title:
- Tracing stars of MW dwarf galaxies: Sextans
- Short Name:
- J/A+A/609/A53
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a deep and very spatially extended CTIO/DECam g and r photometric catalogue of point-sources (reaching out to ~2 magnitudes below the oldest main-sequence turn-off and covering ~20deg^2^) around the Sextans dwarf spheroidal galaxy, together with another catalogue of literature spectroscopic measurements (Walker et al., 2009, Cat. J/AJ/137/3100 and Battaglia et al., 2011, Cat. J/MNRAS/411/1013) with updated membership probabilities.
- ID:
- ivo://CDS.VizieR/J/AJ/159/83
- Title:
- Transit analysis for the K2-25 system
- Short Name:
- J/AJ/159/83
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The abundance of planets with orbital periods of a few to tens of days suggests that exoplanets experience complex dynamical histories. Planets in young stellar clusters or associations have well-constrained ages and therefore provide an opportunity to explore the dynamical evolution of exoplanets. K2-25b is a Neptune-sized planet in an eccentric, 3.48day orbit around an M4.5 dwarf star in the Hyades cluster (650Myr). In order to investigate its non-zero eccentricity and tight orbit, we analyze transit timing variations (TTVs) which could reveal clues to the migration processes that may have acted on the planet. We obtain 12 nonconsecutive transits using the MEarth observatories and long-term photometric monitoring, which we combine with 10 transits from the Spitzer Space Telescope and 20 transits from K2. Tables of MEarth photometry accompany this work. We fit each transit lightcurve independently. We first investigate whether inhomogeneities on the stellar surface (such as spots or plages) are differentially affecting our transit observations. The measured transit depth does not vary significantly between transits, though we see some deviations from the fiducial transit model. We then looked for TTVs as evidence of a nontransiting perturber in the system. We find no evidence for >1M_{Earth}_ mass companions within a 2:1 period ratio, or for >5M_{Earth}_ mass planets within a 7:2 period ratio.
- ID:
- ivo://CDS.VizieR/J/A+A/657/A102
- Title:
- Transit events of 4 extrasolar planets
- Short Name:
- J/A+A/657/A102
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Meter-sized ground-based telescopes are frequently used today for the follow-up of extrasolar planet candidates. While the transit signal of a Jupiter-sized object can typically be detected to a high level of confidence with small telescope apertures as well, the shallow transit dips of planets with the size of Neptune and smaller are more challenging to reveal. We employ new observational data to illustrate the photometric follow-up capabilities of meter-sized telescopes for shallow exoplanet transits. We describe in detail the capability of distinguishing the photometric signal of an exoplanet transit from an underlying trend in the light curve. The transit depths of the six targets we observed, Kepler-94b, Kepler-63b, K2-100b, K2-138b, K2-138c, and K2-138e, range from 3.9ppt down to 0.3ppt. For five targets of this sample, we provide the first ground-based photometric follow-up. The timing of three targets is precisely known from previous observations, and the timing of the other three targets is uncertain and we aim to constrain it. We detect or rule out the transit features significantly in single observations for the targets that show transits of 1.3ppt or deeper. The shallower transit depths of two targets of 0.6 and 0.8ppt were detected tentatively in single light curves, and were detected significantly by repeated observations. Only for the target of the shallowest transit depth of 0.3ppt were we unable to draw a significant conclusion despite combining five individual light curves. An injection-recovery test on our real data shows that we detect transits of 1.3ppt depth significantly in single light curves if the transit is fully covered, including out-of-transit data toward both sides, in some cases down to 0.7ppt depth. For Kepler-94b, Kepler-63b, and K2-100b, we were able to verify the ephemeris. In the case of K2-138c with a 0.6ppt deep transit, we were able to refine it, and in the case of K2-138e, we ruled out the transit in the time interval of more than +/-1.5{sigma} of its current literature ephemeris.
- ID:
- ivo://CDS.VizieR/J/AJ/154/49
- Title:
- Transiting Exoplanet Monitoring Project. II. HAT-P-33
- Short Name:
- J/AJ/154/49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 10 R-band photometric observations of eight different transits of the hot Jupiter HAT-P-33b, which has been targeted by our Transiting Exoplanet Monitoring Project. The data were obtained by two telescopes at the Xinglong Station of National Astronomical Observatories of China (NAOC) from 2013 December through 2016 January, and exhibit photometric scatter of 1.6-3.0mmag. After jointly analyzing the previously published photometric data, radial-velocity (RV) measurements, and our new light curves, we revisit the system parameters and orbital ephemeris for the HAT-P-33b system. Our results are consistent with the published values except for the planet to star radius ratio (R_P_/R_*_), the ingress/egress duration ({tau}) and the total duration (T_14_), which together indicate a slightly shallower and shorter transit shape. Our results are based on more complete light curves, whereas the previously published work had only one complete transit light curve. No significant anomalies in Transit Timing Variations (TTVs) are found, and we place upper mass limits on potential perturbers, largely supplanting the loose constraints provided by the extant RV data. The TTV limits are stronger near mean-motion resonances, especially for the low-order commensurabilities. We can exclude the existence of a perturber with mass larger than 0.6, 0.3, 0.5, 0.5, and 0.3M_{Earth}_ near the 1:3, 1:2, 2:3, 3:2, and 2:1 resonances, respectively.
- ID:
- ivo://CDS.VizieR/J/A+A/424/L31
- Title:
- Transiting exoplanet OGLE-TR-132b
- Short Name:
- J/A+A/424/L31
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This data is the lightcurve of the transiting planetary system OGLE-TR-132. Very high photometric precision has been obtained using FORS2 on the VLT (ESO). The transit occuring on May 16th, 2004 has been observed in very good atmospheric conditions. Image subtraction and aperture photometry was performed. The flux is normalized to unity.
- ID:
- ivo://CDS.VizieR/J/MNRAS/506/3810
- Title:
- 7 transiting exoplanets CHEOPS light curves
- Short Name:
- J/MNRAS/506/3810
- Date:
- 03 Dec 2021 00:34:45
- Publisher:
- CDS
- Description:
- We present 17 transit light curves of seven known warm-Jupiters observed with the CHaracterising ExOPlanet Satellite (CHEOPS). The light curves have been collected as part of the CHEOPS Guaranteed Time Observation (GTO) program that searches for transit-timing variation (TTV) of warm-Jupiters induced by a possible external perturber to shed light on the evolution path of such planetary systems. We describe the CHEOPS observation process, from the planning to the data analysis. In this work we focused on the timing performance of CHEOPS, the impact of the sampling of the transit phases, and the improvement we can obtain combining multiple transits together. We reached the highest precision on the transit time of about 13-16s for the brightest target (WASP-38, G=9.2) in our sample. From the combined analysis of multiple transits of fainter targets with G>=11 we obtained a timing precision of ~2min. Additional observations with CHEOPS, covering a longer temporal baseline, will further improve the precision on the transit times and will allow us to detect possible TTV signals induced by an external perturber.