- ID:
- ivo://CDS.VizieR/J/MNRAS/363/1111
- Title:
- Tycho-2 stars with IR excess
- Short Name:
- J/MNRAS/363/1111
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Stars of all evolutionary phases have been found to have excess infrared emission due to the presence of circumstellar material. To identify such stars, we have positionally correlated the infrared Mid-Course Space Experiment (MSX) Point Source Catalogue (<V/114>) and the Tycho-2 optical catalogue (<I/259>). Near-mid-infrared colour criteria have been developed to select infrared excess stars. The search yielded 1938 excess stars; over half (979) have never previously been detected by IRAS. The excess stars were found to be young objects such as Herbig Ae/Be and Be stars, and evolved objects such as OH/IR (infrared) and carbon stars. A number of B-type excess stars were also discovered whose infrared colours could not be readily explained by known catalogued objects.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/534/A110
- Title:
- Type-2 AGN from XMM-COSMOS bolometric output
- Short Name:
- J/A+A/534/A110
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Study of the multi-wavelength properties of a sample of 255 spectroscopically identified X-ray selected Type-2 AGN from the XMM-COSMOS survey. For each source, X-ray ID, spectroscopic redshift, logarithm of the 2-10keV luminosity, logarithm of the bolometric luminosity, bolometric correction, logarithm of the stellar mass, star formation rate, absolute magnitude M_U_, absolute magnitude M_V_, absolute magnitude M_J_ (Johnson-Kron-Cousin system), morphological class.
- ID:
- ivo://CDS.VizieR/J/ApJ/841/102
- Title:
- Type 2 AGN host galaxies in Chandra-COSMOS
- Short Name:
- J/ApJ/841/102
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the star formation properties of a large sample of ~2300 X-ray-selected Type 2 Active Galactic Nuclei (AGNs) host galaxies out to z~3 in the Chandra COSMOS Legacy Survey in order to understand the connection between the star formation and nuclear activity. Making use of the existing multi-wavelength photometric data available in the COSMOS field, we perform a multi-component modeling from far-infrared to near-ultraviolet using a nuclear dust torus model, a stellar population model and a starburst model of the spectral energy distributions (SEDs). Through detailed analyses of SEDs, we derive the stellar masses and the star formation rates (SFRs) of Type 2 AGN host galaxies. The stellar mass of our sample is in the range of 9<logM_stellar_/M_{sun}_<12 with uncertainties of ~0.19dex. We find that Type 2 AGN host galaxies have, on average, similar SFRs compared to the normal star-forming galaxies with similar M_stellar_ and redshift ranges, suggesting no significant evidence for enhancement or quenching of star formation. This could be interpreted in a scenario, where the relative massive galaxies have already experienced substantial growth at higher redshift (z>3), and grow slowly through secular fueling processes hosting moderate-luminosity AGNs.
- ID:
- ivo://CDS.VizieR/J/ApJ/796/L18
- Title:
- Type Ia supernova 2011de UVOT photometry
- Short Name:
- J/ApJ/796/L18
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present and discuss the ultraviolet (UV)/optical photometric light curves and absolute magnitudes of the Type Ia supernova (SN Ia) 2011de from the Swift Ultraviolet/Optical Telescope. We find it to be the UV brightest SN Ia yet observed - more than a factor of 10 brighter than normal SNe Ia in the mid-ultraviolet. We find that the UV/optical brightness and broad light curve evolution can be modeled with additional flux from the shock of the ejecta hitting a relatively large red giant companion separated by 6x10^13^ cm. However, the post-maximum behavior of other UV-bright SNe Ia can also be modeled in a similar manner, including objects with UV spectroscopy or pre-maximum photometry which is inconsistent with this model. This suggests that similar UV luminosities can be intrinsic or caused by other forms of shock interaction. The high velocities reported for SN 2011de make it distinct from the UV-bright "super-Chandrasekhar" SNe Ia and the NUV-blue group of normal SNe Ia. SN 2011de is an extreme example of the UV variations in SNe Ia.
- ID:
- ivo://CDS.VizieR/J/MNRAS/389/1871
- Title:
- Type Ia supernovae candidates from SDSS
- Short Name:
- J/MNRAS/389/1871
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In the course of the Sloan Digital Sky Survey (SDSS-I), a large fraction of the surveyed area was observed more than once due to field tiling overlap, usually at different epochs. We utilize some of these data to perform a supernova (SN) survey at a mean redshift of z=0.2. Our archival search, in ~5 per cent of the SDSS-I overlap area, produces 29 SN candidates clearly associated with host galaxies. Using the Bayesian photometric classification algorithm of Poznanski et al. (2002PASP..114..833P), and correcting for classification bias, we find 17 of the 29 candidates are likely Type Ia SNe.
- ID:
- ivo://CDS.VizieR/J/MNRAS/406/782
- Title:
- Type Ia supernovae luminosities
- Short Name:
- J/MNRAS/406/782
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Precision cosmology with Type Ia supernovae (SNe Ia) makes use of the fact that SN Ia luminosities depend on their light-curve shapes and colours. Using Supernova Legacy Survey (SNLS) and other data, we show that there is an additional dependence on the global characteristics of their host galaxies: events of the same light-curve shape and colour are, on average, 0.08mag (~4.0{sigma}) brighter in massive host galaxies (presumably metal-rich) and galaxies with low specific star formation rates (sSFR).
- ID:
- ivo://CDS.VizieR/J/A+A/615/A68
- Title:
- Type Ia supernova luminosities
- Short Name:
- J/A+A/615/A68
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a fully consistent catalog of local and global properties of host galaxies of 882 Type Ia supernovae (SNIa) that were selected based on their light-curve properties, spanning the redshift range 0.01<z<1. This catalog corresponds to a preliminary version of the compilation sample and includes Supernova Legacy Survey (SNLS) 5-year data, Sloan Digital Sky Survey (SDSS), and low-redshift surveys. We measured low- and moderate-redshift host galaxy photometry in SDSS stacked and single-epoch images and used spectral energy distribution (SED) fitting techniques to derive host properties such as stellar mass and U-V rest-frame colors; the latter are an indicator of the luminosity-weighted age of the stellar population in a galaxy. We combined these results with high-redshift host photometry from the SNLS survey and thus obtained a consistent catalog of host stellar masses and colors across a wide redshift range. We also estimated the local observed fluxes at the supernova location within a proper distance radius of 3kpc, corresponding to the SNLS imaging resolution, and transposed them into local U-V rest-frame colors. This is the first time that local environments surrounding SNIa have been measured at redshifts spanning the entire Hubble diagram. Selecting SNIa based on host photometry quality, we then performed cosmological fits using local color as a third standardization variable, for which we split the sample at the median value. We find a local color step significance of -0.091+/-0.013mag (7{sigma}), which effect is as significant as the maximum mass step effect. This indicates that the remaining luminosity variations in SNIa samples can be reduced with a third standardization variable that takes the environment into account. Correcting for the maximum mass step correction of -0.094+/-0.013mag, we find a local color effect of -0.057+/-0.012mag (5{sigma}), which shows that additional information is provided by the close environment of SNIa. Departures from the initial choices were investigated and showed that the local color effect is still present, although less pronounced. We discuss the possible implications for cosmology and find that using the local color in place of the stellar mass results in a change in the measured value of the dark energy equation-of-state parameter of 0.6%. Standardization using local U-V color in addition to stretch and color reduces the total dispersion in the Hubble diagram from 0.15 to 0.14mag. This will be of tremendous importance for the forthcoming SNIa surveys, and in particular for the Large Synoptic Survey Telescope (LSST), for which uncertainties on the dark energy equation of state will be comparable to the effects reported here.
- ID:
- ivo://CDS.VizieR/J/ApJ/897/159
- Title:
- Type Ia supernova SN 2019ein UBVgri photometry
- Short Name:
- J/ApJ/897/159
- Date:
- 16 Mar 2022 00:28:33
- Publisher:
- CDS
- Description:
- We present multiwavelength photometric and spectroscopic observations of SN 2019ein, a high-velocity Type Ia supernova (SNIa) discovered in the nearby galaxy NGC5353 with a two-day nondetection limit. SN 2019ein exhibited some of the highest measured expansion velocities of any SNIa, with a SiII absorption minimum blueshifted by 24000km/s at 14days before peak brightness. More unusually, we observed the emission components of the PCygni profiles to be blueshifted upward of 10000km/s before B-band maximum light. This blueshift, among the highest in a sample of 28 other SNeIa, is greatest at our earliest spectroscopic epoch and subsequently decreases toward maximum light. We discuss possible progenitor systems and explosion mechanisms that could explain these extreme absorption and emission velocities. Radio observations beginning 14days before B-band maximum light yield nondetections at the position of SN2019ein, which rules out symbiotic progenitor systems, most models of fast optically thick accretion winds, and optically thin shells of mass<~10^-6^M{odot} at radii <100au. Comparing our spectra to models and observations of other high-velocity SNeIa, we find that SN2019ein is well fit by a delayed-detonation explosion. We propose that the high emission velocities may be the result of abundance enhancements due to ejecta mixing in an asymmetric explosion, or optical depth effects in the photosphere of the ejecta at early times. These findings may provide evidence for common explosion mechanisms and ejecta geometries among high-velocity SNeIa.
- ID:
- ivo://CDS.VizieR/J/ApJ/717/342
- Title:
- Type Ibc SNe in disturbed galaxies
- Short Name:
- J/ApJ/717/342
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We compare the radial locations of 178 core-collapse supernovae (CCSNe) to the R-band and H{alpha} light distributions of their host galaxies. When the galaxies are split into "disturbed" and "undisturbed" categories, a striking difference emerges. The disturbed galaxies have a central excess of CCSNe and this excess is almost completely dominated by supernovae of types Ib, Ic, and Ib/c, whereas type II supernovae dominate in all other environments. The difference cannot easily be explained by metallicity or extinction effects, and thus we propose that this is direct evidence for a stellar initial mass function that is strongly weighted toward high-mass stars, specifically in the central regions of disturbed galaxies.
- ID:
- ivo://CDS.VizieR/J/ApJ/785/37
- Title:
- Type Ic SN 2010mb optical photometry
- Short Name:
- J/ApJ/785/37
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present our observations of SN 2010mb, a Type Ic supernova (SN) lacking spectroscopic signatures of H and He. SN 2010mb has a slowly declining light curve (LC) (~600 days) that cannot be powered by ^56^Ni/^56^Co radioactivity, the common energy source for Type Ic SNe. We detect signatures of interaction with hydrogen-free circumstellar material including a blue quasi-continuum and, uniquely, narrow oxygen emission lines that require high densities (~10^9^/cm^3^). From the observed spectra and LC, we estimate that the amount of material involved in the interaction was ~3 M_{sun}_. Our observations are in agreement with models of pulsational pair-instability SNe described in the literature.