- ID:
- ivo://CDS.VizieR/J/ApJ/717/342
- Title:
- Type Ibc SNe in disturbed galaxies
- Short Name:
- J/ApJ/717/342
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We compare the radial locations of 178 core-collapse supernovae (CCSNe) to the R-band and H{alpha} light distributions of their host galaxies. When the galaxies are split into "disturbed" and "undisturbed" categories, a striking difference emerges. The disturbed galaxies have a central excess of CCSNe and this excess is almost completely dominated by supernovae of types Ib, Ic, and Ib/c, whereas type II supernovae dominate in all other environments. The difference cannot easily be explained by metallicity or extinction effects, and thus we propose that this is direct evidence for a stellar initial mass function that is strongly weighted toward high-mass stars, specifically in the central regions of disturbed galaxies.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/785/37
- Title:
- Type Ic SN 2010mb optical photometry
- Short Name:
- J/ApJ/785/37
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present our observations of SN 2010mb, a Type Ic supernova (SN) lacking spectroscopic signatures of H and He. SN 2010mb has a slowly declining light curve (LC) (~600 days) that cannot be powered by ^56^Ni/^56^Co radioactivity, the common energy source for Type Ic SNe. We detect signatures of interaction with hydrogen-free circumstellar material including a blue quasi-continuum and, uniquely, narrow oxygen emission lines that require high densities (~10^9^/cm^3^). From the observed spectra and LC, we estimate that the amount of material involved in the interaction was ~3 M_{sun}_. Our observations are in agreement with models of pulsational pair-instability SNe described in the literature.
- ID:
- ivo://CDS.VizieR/J/MNRAS/386/2115
- Title:
- Type II Cepheid and RR Lyrae variables
- Short Name:
- J/MNRAS/386/2115
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Infrared and optical absolute magnitudes are derived for the type II Cepheids kappa Pav and VY Pyx using revised Hipparcos parallaxes and for kappa Pav, V553 Cen and SW Tau from pulsational parallaxes. Revised Hipparcos and HST parallaxes for RR Lyrae agree satisfactorily and are combined in deriving absolute magnitudes. Phase-corrected J, H and Ks mags are given for 142 Hipparcos RR Lyraes based on Two-Micron All-Sky Survey observations. Pulsation and trigonometrical parallaxes for classical Cepheids are compared to establish the best value for the projection factor (p) used in pulsational analyses.
- ID:
- ivo://CDS.VizieR/J/AJ/146/61
- Title:
- Type II Cepheid candidates. IV. Objects from NSVS
- Short Name:
- J/AJ/146/61
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have obtained VR photometry of 447 Cepheid variable star candidates with declinations north of -14{deg}30', most of which were identified using the Northern Sky Variability Survey (NSVS) data archive. Periods and other photometric properties were derived from the combination of our data with the NSVS data. Atmospheric parameters were determined for 81 of these stars from low-resolution spectra. The identification of type II Cepheids based on the data presented in all four papers in this series is discussed. On the basis of spectra, 30 type II Cepheids were identified while 53 variables were identified as cool, main sequence stars and 283 as red giants following the definitions in Paper III. An additional 30 type II Cepheids were identified on the basis of light curves. The present classifications are compared with those from the Machine-learned All Sky Automated Survey Classification Catalog for 174 stars in common.
- ID:
- ivo://CDS.VizieR/J/A+A/619/A51
- Title:
- Type II Cepheids in the Galactic bulge
- Short Name:
- J/A+A/619/A51
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new Near-Infrared photometry of Type II Cepheids in the Bulge from the VISTA Variables in the Via Lactea survey (VVV) (Minniti et al., 2010NewA...15..433M; Saito et al., 2012A&A...537A.107S, Cat. II/337. We provide the largest sample (894 stars) of T2Cs with JHKs observations that have accurate periods from the OGLE catalog (Soszynski et al., 2017, Cat. J/AcA/67/297). Our analysis makes use of the Ks-band time-series observations to estimate mean-magnitudes and individual distances by means of the Period-Luminosity PL relation. To constrain the kinematic properties of our targets, we complement our analysis with proper motions based on both the VVV and Gaia Data Release 2.
- ID:
- ivo://CDS.VizieR/J/A+A/637/A73
- Title:
- Type IIn supernova photometry
- Short Name:
- J/A+A/637/A73
- Date:
- 14 Jan 2022 08:08:51
- Publisher:
- CDS
- Description:
- The evolution of a Type IIn supernova (SN IIn) is governed by the interaction between the SN ejecta and a hydrogen-rich circumstellar medium (CSM). SNe IIn thus allow us to probe the late-time mass-loss history of their progenitor stars. We present optical photometry of a sample of 42 Type IIn supernovae, obtained by the Palomar Transient Factory (PTF) collaboration and its successor, the intermediate PTF (iPTF), from 2009 to 2017 using the 1.2m Samuel Oschin telescope and the 1.52m telescope at Palomar Observatory, California, USA.
- ID:
- ivo://CDS.VizieR/J/ApJ/860/68
- Title:
- Type IIn Supernova SN 2010bt photometry
- Short Name:
- J/ApJ/860/68
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- It is well known that massive stars (M>8M_{sun}_) evolve up to the collapse of the stellar core, resulting in most cases in a supernova (SN) explosion. Their heterogeneity is related mainly to different configurations of the progenitor star at the moment of the explosion and to their immediate environments. We present photometry and spectroscopy of SN 2010bt, which was classified as a Type IIn SN from a spectrum obtained soon after discovery and was observed extensively for about 2 months. After the seasonal interruption owing to its proximity to the Sun, the SN was below the detection threshold, indicative of a rapid luminosity decline. We can identify the likely progenitor with a very luminous star (log L/L_{sun}_~7) through comparison of Hubble Space Telescope images of the host galaxy prior to explosion with those of the SN obtained after maximum light. Such a luminosity is not expected for a quiescent star, but rather for a massive star in an active phase. This progenitor candidate was later confirmed via images taken in 2015 (~5yr post-discovery), in which no bright point source was detected at the SN position. Given these results and the SN behavior, we conclude that SN 2010bt was likely a Type IIn SN and that its progenitor was a massive star that experienced an outburst shortly before the final explosion, leading to a dense H-rich circumstellar environment around the SN progenitor.
- ID:
- ivo://CDS.VizieR/J/ApJ/861/63
- Title:
- Type IIP SN 2016bkv LCs and spectra
- Short Name:
- J/ApJ/861/63
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- While interaction with circumstellar material is known to play an important role in Type IIn supernovae (SNe), analyses of the more common SNe IIP and IIL have not traditionally included interaction as a significant power source. However, recent campaigns to observe SNe within days of explosion have revealed narrow emission lines of high-ionization species in the earliest spectra of luminous SNe II of all subclasses. These "flash ionization" features indicate the presence of a confined shell of material around the progenitor star. Here we present the first low-luminosity (LL) SN to show flash ionization features, SN 2016bkv. This SN peaked at MV = -16 mag and has H{alpha} expansion velocities under 1350 km s-1 around maximum light, placing it at the faint/slow end of the distribution of SNe IIP (similar to SN 2005cs). The light-curve shape of SN 2016bkv is also extreme among SNe IIP. A very strong initial peak could indicate additional luminosity from circumstellar interaction. A very small fall from the plateau to the nickel tail indicates unusually large production of radioactive nickel compared to other LL SNe IIP. A comparison between nebular spectra of SN 2016bkv and models raises the possibility that SN 2016bkv is an electron-capture supernova.
- ID:
- ivo://CDS.VizieR/J/ApJ/799/208
- Title:
- Type IIP supernovae from Pan-STARRS1
- Short Name:
- J/ApJ/799/208
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In recent years, wide-field sky surveys providing deep multiband imaging have presented a new path for indirectly characterizing the progenitor populations of core-collapse supernovae (SNe): systematic light-curve studies. We assemble a set of 76 grizy-band Type IIP SN light curves from Pan-STARRS1, obtained over a constant survey program of 4yr and classified using both spectroscopy and machine-learning-based photometric techniques. We develop and apply a new Bayesian model for the full multiband evolution of each light curve in the sample. We find no evidence of a subpopulation of fast-declining explosions (historically referred to as "Type IIL" SNe). However, we identify a highly significant relation between the plateau phase decay rate and peak luminosity among our SNe IIP. These results argue in favor of a single parameter, likely determined by initial stellar mass, predominantly controlling the explosions of red supergiants. This relation could also be applied for SN cosmology, offering a standardizable candle good to an intrinsic scatter of <~0.2mag. We compare each light curve to physical models from hydrodynamic simulations to estimate progenitor initial masses and other properties of the Pan-STARRS1 Type IIP SN sample. We show that correction of systematic discrepancies between modeled and observed SN IIP light-curve properties and an expanded grid of progenitor properties are needed to enable robust progenitor inferences from multiband light-curve samples of this kind. This work will serve as a pathfinder for photometric studies of core-collapse SNe to be conducted through future wide-field transient searches.
- ID:
- ivo://CDS.VizieR/J/MNRAS/459/3939
- Title:
- Type II supernova light curves
- Short Name:
- J/MNRAS/459/3939
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- High-quality collections of Type II supernova (SN) light curves are scarce because they evolve for hundreds of days, making follow-up observations time consuming and often extending over multiple observing seasons. In light of these difficulties, the diversity of SNe II is not fully understood. Here we present ultraviolet and optical photometry of 12 SNe II monitored by the Las Cumbres Observatory Global Telescope Network during 2013 to 2014, and compare them with previously studied SNe having well-sampled light curves. We explore SN II diversity by searching for correlations between the slope of the linear light-curve decay after maximum light (historically used to divide SNe II into IIL and IIP) and other measured physical properties. While SNe IIL are found to be on average more luminous than SNe IIP, SNe IIL do not appear to synthesize more ^56^Ni than SNe IIP. Finally, optical nebular spectra obtained for several SNe in our sample are found to be consistent with models of red supergiant progenitors in the 12-16M_{sun}_ range. Consequently, SNe IIL appear not to account for the deficit of massive red supergiants as SN II progenitors.