- ID:
- ivo://CDS.VizieR/J/AJ/141/44
- Title:
- V396 Mon BVRI light curves
- Short Name:
- J/AJ/141/44
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper analyzes the first obtained four-color light curves of V396 Mon using the 2003 version of the W-D code. It is confirmed that V396 Mon is a shallow W-type contact binary system with a mass ratio q=2.554(+/-0.004) and a degree of contact factor f=18.9%(+/-1.2%). A period investigation based on all available data shows that the period of the system includes a long-term decrease (dP/dt=-8.57x10^-8^days/yr) and an oscillation (A3=0.0160day, T3=42.4yr). They are caused by angular momentum loss and light-time effect, respectively. The suspect third body is possibly a small M-type star (about 0.31 solar mass).
Number of results to display per page
Search Results
7972. V960 Mon light curves
- ID:
- ivo://CDS.VizieR/J/A+A/582/L12
- Title:
- V960 Mon light curves
- Short Name:
- J/A+A/582/L12
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We monitored the recent FUor 2MASS J06593158-0405277 (V960 Mon) since November 2009 at various observatories and multiple wavelengths. After the outburst by nearly 2.9mag in r around September 2014 the brightness gently fades until April 2015 by nearly 1mag in U and 0.5mag in z. Thereafter the brightness at {lambda}>5000{AA} was constant until June 2015 while the shortest wavelengths (U,B) indicate a new rise, similar to that seen for the FUor V2493 Cyg (HBC722). Our near-infrared (NIR) monitoring between December 2014 and April 2015 shows a smaller outburst amplitude (~2mag) and a smaller (0.2-0.3mag) post-outburst brightness decline. Optical and NIR color-magnitude diagrams indicate that the brightness decline is caused by growing extinction. The post-outburst light curves are modulated by an oscillating color-neutral pattern with a period of about 17 days and an amplitude declining from ~0.08mag in October 2014 to ~0.04mag in May 2015. The properties of the oscillating pattern lead us to suggest the presence of a close binary with eccentric orbit.
- ID:
- ivo://CDS.VizieR/J/ApJ/815/4
- Title:
- V899 Mon long-term monitoring
- Short Name:
- J/ApJ/815/4
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a detailed study of V899 Mon (a new member in the FUors/EXors family of young low-mass stars undergoing outburst), based on our long-term monitoring of the source starting from 2009 November to 2015 April. Our optical and near-infrared photometric and spectroscopic monitoring recorded the source transitioning from its first outburst to a short-duration quiescence phase (<1yr), and then returning to a second outburst. We report here the evolution of the outflows from the inner region of the disk as the accretion rate evolved in various epochs. Our high-resolution (R~37000) optical spectrum could resolve interesting clumpy structures in the outflow traced by various lines. Change in far-infrared flux was also detected between two outburst epochs. Based on our observations, we constrained various stellar and envelope parameters of V899 Mon, as well as the kinematics of its accretion and outflow. The photometric and spectroscopic properties of this source fall between classical FUors and EXors. Our investigation of V899 Mon hints at instability associated with magnetospheric accretion being the physical cause of the sudden short-duration pause of the outburst in 2011. It is also a good candidate to explain similar short-duration pauses in outbursts of some other FUors/EXors sources.
- ID:
- ivo://CDS.VizieR/J/ApJ/889/148
- Title:
- V346 Nor IJHKs photometry & IR spectra
- Short Name:
- J/ApJ/889/148
- Date:
- 17 Jan 2022 11:51:03
- Publisher:
- CDS
- Description:
- FU Orionis-type objects (FUors) are young low-mass stars undergoing powerful accretion outbursts. The increased accretion is often accompanied by collimated jets and energetic, large-scale molecular outflows. The extra heating during the outburst may also induce detectable geometrical, chemical, and mineralogical changes in the circumstellar material, affecting possible planet formation around these objects. V346 Nor is a southern FUor with peculiar spectral characteristics. Decades after the beginning of its outburst, it unexpectedly underwent a fading event around 2010 due to a decrease in the mass accretion rate onto the star by at least two orders of magnitude. Here we present optical and near-infrared photometry and spectroscopy obtained after the minimum. Our light curves show a gradual re-brightening of V346 Nor, with its Ks-band brightness only 1.5mag below the outburst brightness level. Our Very Large Telescope (VLT)/XSHOOTER spectroscopic observations display several strong forbidden emission lines toward the source from various metals and molecular hydrogen, suggesting the launch of a new jet. Our N-band spectrum obtained with VLT/VISIR outlines a deeper silicate absorption feature than before, indicating that the geometry of the circumstellar medium has changed in the post-outburst period compared to peak brightness.
- ID:
- ivo://CDS.VizieR/J/MNRAS/482/4329
- Title:
- Void galaxies in the nearby Universe
- Short Name:
- J/MNRAS/482/4329
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The main goal of this work is to form a large, deep and representative sample of dwarf galaxies residing in voids of the nearby Universe. The formed sample is the basement for the comprehensive mass study of the galaxy content, their evolutionary status, clustering and dynamics with respect to their counterparts residing in more typical, denser regions and for study of void small-scale substructures. We present 25 voids over the entire sky within 25Mpc from the Local Group. They are defined as groups of lumped empty spheres bounded by `luminous' galaxies with the absolute K-band magnitudes brighter than -22.0. The identified void regions include the Local Void and other known nearby voids. The nearest nine voids occupy a substantial part of the Local Volume. Of the total number of 6792 cataloged galaxies in the considered volume, 1354 objects fall into 25 nearby voids. Of this general void galaxy sample, we separate the sub-sample of 'inner' void galaxies, residing deeper in voids, with distances to the nearest luminous galaxy DNN>2.0Mpc. The 'inner' galaxy sample includes 1088 objects, mostly dwarfs with MB distribution peaked near -15.0 and extending down to -7.5mag. Of them, 195 fall in the Local Volume (space within R=11Mpc). We present the general statistical properties of this Nearby Void Galaxy sample and discuss the issues related to the sample content and the prospects of its use.
- ID:
- ivo://CDS.VizieR/J/MNRAS/464/666
- Title:
- Void Galaxy Survey, photometry and structure
- Short Name:
- J/MNRAS/464/666
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We analyse photometry from deep B-band images of 59 void galaxies in the Void Galaxy Survey (VGS), together with their near-infrared 3.6{mu}m and 4.5{mu}m Spitzer photometry. The VGS galaxies constitute a sample of void galaxies that were selected by a geometric-topological procedure from the Sloan Digital Sky Survey Data Release 7 data release, and which populate the deep interior of voids. Our void galaxies span a range of absolute B-magnitude from M_B_=-15.5 to -20, while at the 3.6{mu}m band their magnitudes range from M_3.6_=-18 to -24. Their B-[3.6] colour and structural parameters indicate these are star-forming galaxies. A good reflection of the old stellar population, the near-infrared band photometry also provide a robust estimate of the stellar mass, which for the VGS galaxies we confirm to be smaller than 3x10^10^M_{sun}_. In terms of the structural parameters and morphology, our findings align with other studies in that our VGS galaxy sample consists mostly of small late-type galaxies. Most of them are similar to Sd-Sm galaxies, although a few are irregularly shaped galaxies. The sample even includes two early-type galaxies, one of which is an AGN. Their Sersic indices are nearly all smaller than n=2 in both bands and they also have small half-light radii. In all, we conclude that the principal impact of the void environment on the galaxies populating them mostly concerns their low stellar mass and small size.
- ID:
- ivo://CDS.VizieR/J/AJ/161/42
- Title:
- Volume-limited sample of cool dwarfs. I. L0-T8 dwarfs
- Short Name:
- J/AJ/161/42
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new volume-limited sample of L0-T8 dwarfs out to 25pc defined entirely by parallaxes, using our recent measurements from UKIRT/WFCAM along with Gaia DR2 and literature parallaxes. With 369 members, our sample is the largest parallax-defined volume-limited sample of L and T dwarfs to date, yielding the most precise space densities for such objects. We find the local L0-T8 dwarf population includes 5.5%{+/-}1.2% young objects (<~200Myr) and 2.6%{+/-}1.6% subdwarfs, as expected from recent studies favoring representative ages <~4Gyr for the ultracool field population. This is also the first volume-limited sample to comprehensively map the transition from L to T dwarfs (spectral types ~L8-T4). After removing binaries, we identify a previously unrecognized, statistically significant (>4.4{sigma}) gap ~0.5mag wide in (J-K)_MKO_ colors in the L/T transition, i.e., a lack of such objects in our volume-limited sample, implying a rapid phase of atmospheric evolution. In contrast, the most successful models of the L/T transition to date-the "hybrid" models of Saumon & Marley-predict a pileup of objects at the same colors where we find a deficit, demonstrating the challenge of modeling the atmospheres of cooling brown dwarfs. Our sample illustrates the insights to come from even larger parallax-selected samples from the upcoming Legacy Survey of Space and Time by the Vera Rubin Obsevatory.
- ID:
- ivo://CDS.VizieR/J/A+A/624/A88
- Title:
- V643 Ori differential light curves
- Short Name:
- J/A+A/624/A88
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- One of the greatest uncertainties in modelling the mass-exchange phases during the evolution of a binary system is the amount of mass and angular momentum that has been lost from the system. In order to constrain this problem, a favourable, evolved and detached real binary system is valuable as an example of the end result of this process. We study the 52-day post-mass-exchange eclipsing binary V643 Ori from complete uvby light curves and high-resolution spectra. V643 Ori is double-lined and shows total primary eclipses. The orbit is accurately circular and the rotation of both stars synchronised with the orbit, but the photometry from a single year (1993) shows signs of weak spot activity (0.02mag) around the primary eclipse. We determine accurate masses of 3.3 and 1.9M_{sun}_ from the spectroscopic orbit and solve the four light curves to determine radii of 16 and 21R_{sun}_, using the Wilson-Devinney photometric code. The rotational velocities from the cross-correlation profiles agree well with those computed from the known radii and orbital parameters. All observable parameters are thus very precisely determined, but the masses and radii of V643 Ori are incompatible with undisturbed post-main-sequence evolution. We have attempted to simulate the past evolutionary history of V643 Ori under both conservative and non-conservative Case B mass transfer scenarios. In the non-conservative case we varied the amounts of mass and angular momentum loss needed to arrive at the present masses in a circular 52-day orbit, keeping the two stars detached and synchronized as now observed, but without following the evolution of other stellar properties in any detail. Multiple possible solutions were found. Further attempts were made using both the BSE formalism and the binary MESA code in order to track stellar evolution more closely, and make use of the measured radii and temperatures as important additional constraints. Those efforts did not yield satisfactory solutions, possibly due to limitations in handling mass transfer in evolved stars such as these. We remain hopeful that future theoreticians can more fully model the system under realistic conditions.
- ID:
- ivo://CDS.VizieR/J/ApJ/778/116
- Title:
- V1647 Ori long-term optical & NIR observations
- Short Name:
- J/ApJ/778/116
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a detailed study of McNeil's nebula (V1647 Ori) in its ongoing outburst phase starting from 2008 September to 2013 March. Our 124 nights of photometric observations were carried out in optical V, R, I, and near-infrared J, H, K bands, and 59 nights of medium-resolution spectroscopic observations were done in the 5200-9000{AA} wavelength range. All observations were carried out with the 2m Himalayan Chandra Telescope and 2m IUCAA Girawali Telescope. Our observations show that over the past four and a half years, V1647 Ori and region C near the Herbig-Haro object HH 22A have been undergoing a slow dimming at a rate of ~0.04mag/yr and ~0.05mag/yr, respectively, in R band, which is six times slower than the rate during a similar stage of V1647 Ori in the 2003 outburst. We detected change in flux distribution over the reflection nebula, implying changes in circumstellar matter distribution between the 2003 and 2008 outbursts. Apart from steady wind of velocity ~350km/s, we detected two episodic magnetic reconnection driven winds. Forbidden [OI]{lambda}6300 and [FeII]{lambda}7155 lines were also detected, implying shock regions probably from jets. We tried to explain the outburst timescales of V1647 Ori using the standard models of the FUors kind of outburst and found that pure thermal instability models like Bell and Lin cannot explain the variations in timescales. In the framework of various instability models we conclude that one possible reason for the sudden ending of the 2003 outburst in 2005 November was a low-density region or gap in the inner region (~1AU) of the disk.
- ID:
- ivo://CDS.VizieR/J/A+A/511/A63
- Title:
- V1118 Ori UBVRIJHK outburst light curves
- Short Name:
- J/A+A/511/A63
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The accretion history of low-mass young stars is not smooth but shows spikes of accretion that can last from months and years to decades and centuries. Observations of young stars in outbursts can help us understand the temporal evolution of accreting stars and the interplay between the accretion disk and the stellar magnetosphere. The young late-type star V1118 Orionis was in outburst from 2005 to 2006. We followed the outburst with optical and near-infrared photometry. The X-ray emission was further probed with observations taken with XMM-Newton and Chandra during and after the outburst. In addition, we obtained mid-infrared photometry and spectroscopy with Spitzer at the peak of the outburst and in the post-outburst phase. The spectral energy distribution of V1118 Ori varied significantly over the course of the outburst. The optical flux showed the largest variations, most likely caused by enhanced emission by a hot spot. The hot spot dominated the optical and near-infrared emission at the peak of the outburst, while the disk emission dominated in the mid-infrared. The emission silicate feature in V1118 Ori is flat and does not vary in shape, but was slightly brighter at the peak of the outburst compared to the post-outburst spectrum. The X-ray flux correlated with the optical and infrared fluxes, indicating that accretion affected the magnetically active corona and the stellar magnetosphere. The thermal structure of the corona was variable with some indication of a cooling of the coronal temperature in the early phase of the outburst with a gradual return to normal values. Color-color diagrams in the optical and infrared showed variations during the outburst, with no obvious signature of reddening caused by circumstellar matter. Using Monte-Carlo realizations of star+disk+hotspot models to fit the spectral energy distributions in "quiescence" and at the peak of the outburst, we determined that the mass accretion rate varied from about 2.5x10^-7^M_{sun}_/yr to 1.0x10^-6^M_{sun}_/yr; in addition, the fractional area of the hotspot increased significantly. The multi-wavelength study of the V1118 Ori outburst helped us to understand the variations in spectral energy distributions and demonstrated the interplay between the disk and the stellar magnetosphere in a young, strongly accreting star.