- ID:
- ivo://CDS.VizieR/J/MNRAS/463/2125
- Title:
- White dwarf binary pathways survey
- Short Name:
- J/MNRAS/463/2125
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The number of spatially unresolved white dwarf plus main-sequence star binaries has increased rapidly in the last decade, jumping from only ~30 in 2003 to over 3000. However, in the majority of known systems the companion to the white dwarf is a low-mass M dwarf, since these are relatively easy to identify from optical colours and spectra. White dwarfs with more massive FGK type companions have remained elusive due to the large difference in optical brightness between the two stars. In this paper, we identify 934 main-sequence FGK stars from the Radial Velocity Experiment survey in the Southern hemisphere and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey in the Northern hemisphere, that show excess flux at ultraviolet wavelengths which we interpret as the likely presence of a white dwarf companion. We obtained Hubble Space Telescope ultraviolet spectra for nine systems which confirmed that the excess is indeed caused, in all cases, by a hot compact companion, eight being white dwarfs and one a hot subdwarf or pre-helium white dwarf, demonstrating that this sample is very clean. We also address the potential of this sample to test binary evolution models and Type Ia supernovae formation channels.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/462/2506
- Title:
- White dwarf candidates in DECam first field
- Short Name:
- J/MNRAS/462/2506
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first results from a minute cadence survey of a 3deg^2^ field obtained with the Dark Energy Camera. We imaged part of the Canada-France-Hawaii Telescope Legacy Survey area over eight half-nights. We use the stacked images to identify 111 high proper motion white dwarf candidates with g<=24.5mag and search for eclipse-like events and other sources of variability. We find a new g=20.64mag pulsating ZZ Ceti star with pulsation periods of 11-13min. However, we do not find any transiting planetary companions in the habitable zone of our target white dwarfs. Given the probability of eclipses of 1 per cent and our observing window from the ground, the non-detection of such companions in this first field is not surprising. Minute cadence DECam observations of additional fields will provide stringent constraints on the frequency of planets in the white dwarf habitable zone.
- ID:
- ivo://CDS.VizieR/J/MNRAS/448/2260
- Title:
- White dwarf candidates in SDSS DR10
- Short Name:
- J/MNRAS/448/2260
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a method which uses cuts in colour-colour and reduced proper motion-colour space to select white dwarfs without the recourse to spectroscopy while allowing an adjustable compromise between completeness and efficiency. Rather than just producing a list of white dwarf candidates, our method calculates a probability of being a white dwarf (P_WD_) for any object with available multiband photometry and proper motion. We applied this method to all objects in the Sloan Digital Sky Survey (SDSS) Data Release 10 (DR10) photometric footprint and to a few selected sources in DR7 which did not have reliable photometry in DR9 or DR10. This application results in a sample of 61 969 DR10 and 3799 DR7 photometric sources with calculated P_WD_ from which it is possible to select a sample of ~23000 high-fidelity white dwarf candidates with T_eff_>~7000K and g<=19. This sample contains over 14000 high confidence white dwarfs candidates which have not yet received spectroscopic follow-up. These numbers show that, to date, the spectroscopic coverage of white dwarfs in the SDSS photometric footprint is, on average, only ~40 percent complete. While we describe here in detail the application of our selection to the SDSS catalogue, the same method could easily be applied to other multicolour, large area surveys. We also publish a list of 8701 bright (g<=19) white dwarfs with SDSS spectroscopy, of which 1781 are new identifications in DR9/DR10.
- ID:
- ivo://CDS.VizieR/J/MNRAS/452/765
- Title:
- White dwarf candidates using LAMOST DR3
- Short Name:
- J/MNRAS/452/765
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In previous work by Gentile Fusillo et al., we developed a selection method for white dwarf candidates which makes use of photometry, colours and proper motions to calculate a probability of being a white dwarf (P_WD_). The application of our method to the Sloan Digital Sky Survey (SDSS) data release 10 resulted in =~ 66000 photometrically selected objects with a derived P_WD_, approximately =~21000 of which are high-confidence white dwarf candidates. Here, we present an independent test of our selection method based on a sample of spectroscopically confirmed white dwarfs from the Large Sky Area Multi-Fiber Spectroscopic Telescope (LAMOST) survey. We do this by cross-matching all our =~66000 SDSS photometric white dwarf candidates with the over 4 million spectra available in the third data release of LAMOST. This results in 1673 white dwarf candidates with no previous SDSS spectroscopy, but with available LAMOST spectra. Among these objects, we identify 309 genuine white dwarfs. We find that our P_WD_ can efficiently discriminate between confirmed LAMOST white dwarfs and contaminants. Our white dwarf candidate selection method can be applied to any multiband photometric survey and in this work we conclusively confirm its reliability in selecting white dwarfs without recourse to spectroscopy. We also discuss the spectroscopic completeness of white dwarfs in LAMOST, as well as deriving effective temperatures, surface gravities and masses for the hydrogen-rich atmosphere white dwarfs in the newly identified LAMOST sample.
- ID:
- ivo://CDS.VizieR/J/MNRAS/433/3398
- Title:
- White dwarf main-sequence binaries
- Short Name:
- J/MNRAS/433/3398
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The spectroscopic catalogue of white dwarf main-sequence (WDMS) binaries from the Sloan Digital Sky Survey (SDSS) is the largest and most homogeneous sample of compact binary stars currently known. However, because of selection effects, the current sample is strongly biased against systems containing cool white dwarfs and/or early-type companions, which are predicted to dominate the intrinsic population. In this study, we present colour selection criteria that combines optical (ugriz DR8 SDSS) plus infrared (yjhk DR9 UKIRT Infrared Sky Survey, JHK Two Micron All Sky Survey and/or W1W2 Wide-Field Infrared Survey Explorer) magnitudes to select 3419 photometric candidates of harbouring cool white dwarfs and/or dominant (M dwarf) companions. We demonstrate that 84 percent of our selected candidates are very likely genuine WDMS binaries, and that the white dwarf effective temperatures and secondary star spectral types of 71 percent of our selected sources are expected to be below <~10000-15000K, and concentrated at ~M2-3, respectively. We also present an updated version of the spectroscopic SDSS WDMS binary catalogue, which incorporates 47 new systems from SDSS DR8. The bulk of the DR8 spectroscopy is made up of main-sequence stars and red giants that were targeted as part of the Sloan Extension for Galactic Understanding and Exploration (SEGUE) Survey, therefore the number of new spectroscopic WDMS binaries in DR 8 is very small compared to previous SDSS data releases. Despite their low number, DR8 WDMS binaries are found to be dominated by systems containing cool white dwarfs and therefore represent an important addition to the spectroscopic sample. The updated SDSS DR8 spectroscopic catalogue of WDMS binaries consists of 2316 systems. We compare our updated catalogue with recently published lists of WDMS binaries and conclude that it currently represents the largest, most homogeneous and cleanest sample of spectroscopic WDMS binaries from SDSS.
- ID:
- ivo://CDS.VizieR/J/MNRAS/445/1331
- Title:
- White-dwarf + main-sequence binaries in SDSS DR9
- Short Name:
- J/MNRAS/445/1331
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have identified 227 new spectroscopic white-dwarf + main-sequence (WDMS) binaries from the ninth data release (DR9) of the Sloan Digital Sky Survey (SDSS). The SDSS spectra of the newly found WDMS binaries with a DA white dwarf and an M-dwarf are analysed based on a spectral decomposition/fitting method. We obtain the effective temperatures, surface gravities and masses of the white dwarf, together with the spectral types and metallicities of the secondary star. Two independent distance estimates are derived from the flux-scaling factors between the WDMS SDSS spectra and the white dwarf and M-dwarf model spectra. We find that about 25 per cent of the newly found WDMS binaries show a significant discrepancy between the two distance estimates. This might be caused by the effects of M-dwarf stellar activity or irradiation of the M-dwarf companions by the white dwarf. The stellar parameter distributions are used to investigate the global properties of the newly found WDMS binaries. We find that the WDMS binaries with a low signal-to-noise ratio (S/N<=4.0) usually have a massive DA white dwarf component with a higher surface gravity, and the metallicity is usually significantly different from solar. This suggests that the observational selection effects and the spectral S/N of the WDMS binaries have a significant influence on the determinations of these physical parameters of WDMS binaries.
- ID:
- ivo://CDS.VizieR/J/ApJ/867/62
- Title:
- White dwarf population of Messier 67
- Short Name:
- J/ApJ/867/62
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- White dwarfs (WDs) are excellent forensic tools for studying end-of-life issues surrounding low- and intermediate-mass stars, and the old, solar metallicity open star cluster Messier 67 is a proven laboratory for the study of stellar evolution for solar-type stars. In this paper, we present a detailed spectroscopic study of brighter (M_g_<=12.4) WDs in Messier 67, and in combination with previously published proper motion membership determinations, we identify a clean, representative sample of cluster WDs, including 13 members with hydrogen-dominated atmospheres, at least one of which is a candidate double degenerate, and 5 members with helium-dominated atmospheres. Using this sample we test multiple predictions surrounding the final stages of stellar evolution in solar-type stars. In particular, the stochasticity of the integrated mass lost by ~1.5 solar mass stars is less than 7% of the WD remnant mass. We identify WDs likely resulting from binary evolution, including at least one blue straggler remnant and two helium-core WDs. We observe no evidence of a significant population of helium-core WDs formed by enhanced mass loss on the red giant branch of the cluster. The distribution of WD atmospheric compositions is fully consistent with that in the field, limiting proposed mechanisms for the suppression of helium atmosphere WD formation in star clusters. In short, the WD population of Messier 67 is fully consistent with basic predictions of single- and multiple-star stellar evolution theories for solar metallicity stars.
- ID:
- ivo://CDS.VizieR/J/A+A/486/843
- Title:
- White dwarf-red dwarf binaries in the SDSS
- Short Name:
- J/A+A/486/843
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- To reduce contamination by more distant sources, such as quasars, we have selected candidate white dwarf-red dwarf binaries from the catalogue of proper motion stars drawn from the intersection of the Sloan Digital Sky Survey (SDSS) and the USNO-B1.0 catalogue.
- ID:
- ivo://CDS.VizieR/J/MNRAS/457/1988
- Title:
- White dwarfs in Galactic plane
- Short Name:
- J/MNRAS/457/1988
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigated the prospects for systematic searches of white dwarfs at low Galactic latitudes, using the VLT Survey Telescope H{alpha} Photometric Survey of the Galactic plane and Bulge (VPHAS+). We targeted 17 white dwarf candidates along sightlines of known open clusters, aiming to identify potential cluster members. We confirmed all the 17 white dwarf candidates from blue/optical spectroscopy, and we suggest five of them to be likely cluster members. We estimated progenitor ages and masses for the candidate cluster members, and compare our findings to those for other cluster white dwarfs. A white dwarf in NGC 3532 is the most massive known cluster member (1.13M_{sun}_), likely with an oxygen-neon core, for which we estimate an M_{sun}_ progenitor, close to the mass-divide between white dwarf and neutron star progenitors. A cluster member in Ruprecht 131 is a magnetic white dwarf, whose progenitor mass exceeded 2-3M_{sun}_. We stress that wider searches, and improved cluster distances and ages derived from data of the ESA Gaia mission, will advance the understanding of the mass-loss processes for low- to intermediate-mass stars.
- ID:
- ivo://CDS.VizieR/J/AJ/143/50
- Title:
- White dwarfs in 47 Tuc (NGC 104) with HST
- Short Name:
- J/AJ/143/50
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new distance determination to the Galactic globular cluster 47 Tucanae (47 Tuc, NGC 104) by fitting the spectral energy distributions of its white dwarfs (WDs) to pure hydrogen atmosphere WD models. Our photometric data set is obtained from a 121-orbit Hubble Space Telescope program using the Wide Field Camera 3 UVIS/IR channels, capturing F390W, F606W, F110W, and F160W images. These images cover more than 60 arcmin^2^ and extend over a radial range of 5-13.7arcmin (6.5-17.9pc) within the globular cluster. Using a likelihood analysis, we obtain a best-fitting unreddened distance modulus of (m-M)_o_=13.36+/-0.02+/-0.06 corresponding to a distance of 4.69+/-0.04+/-0.13kpc, where the first error is random and the second is systematic. We also search the WD photometry for infrared excess in the F160W filter, indicative of low-mass companions, and find no convincing cases within our sample.