- ID:
- ivo://CDS.VizieR/J/MNRAS/451/3089
- Title:
- Young clumps embedded in IRDC
- Short Name:
- J/MNRAS/451/3089
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalogue of starless and protostellar clumps associated with infrared dark clouds (IRDCs) in a 40 degrees wide region of the inner Galactic plane (|b|<=1). We have extracted the far-infrared (FIR) counterparts of 3493 IRDCs with known distance in the Galactic longitude range 15<=l<=55 and searched for the young clumps using Herschel infrared Galactic plane survey, the survey of the Galactic plane carried out with the Herschel satellite. Each clump is identified as a compact source detected at 160, 250 and 350um. The clumps have been classified as protostellar or starless, based on their emission (or lack of emission) at 70um. We identify 1723 clumps, 1056 (61%) of which are protostellar and 667 (39%) starless. These clumps are found within 764 different IRDCs, 375 (49%) of which are only associated with protostellar clumps, 178 (23%) only with starless clumps, and 211 (28%) with both categories of clumps. The clumps have a median mass of ~250M_{sun}_ and range up to >10^4^M_{sun}_ in mass and up to 10^5^L_{sun}_ in luminosity. The mass-radius distribution shows that almost 30% of the starless clumps identified in this survey could form high-mass stars; however these massive clumps are confined in only 4% of the IRDCs. Assuming a minimum mass surface density threshold for the formation of high-mass stars, the comparison of the numbers of massive starless clumps and those already containing embedded sources suggests an upper limit lifetime for the starless phase of ~10^5^yr for clumps with a mass M>500M_{sun}_.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/624/A29
- Title:
- Young companion candidate embedded in R CrA cloud
- Short Name:
- J/A+A/624/A29
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Within the NaCo-ISPY exoplanet imaging program, we aim at detecting and characterizing the population of low-mass companions at wide separations (>~10AU). We observed R CrA twice with the NaCo instrument at the Very Large Telescope (VLT) in the L' filter with a one year time baseline in between. We used artificial negative signals to determine the position and brightness of the companion and the related uncertainties. The companion is detected at a separation of 196.8+/-4.5/196.6+/-5.9mas (18.7+/-1.3/18.7+/-1.4AU) and position angle of 134.7+/-0.5{deg}/133.7+/-0.7{deg} in the first/second epoch observation. We measure a contrast of 7.29+/-0.18/6.70+/-0.15mag with respect to the primary. A study of the stellar proper motion rejects the hypothesis that the signal is a background object. Depending on the assumed age, extinction, and brightness of the primary, the stellar companion has a mass between 0.10+/-0.02M_{sun}_ and 1.03^+0.20^_-0.18_M_{sun}_ range, if no contribution from circumsecondary material is taken into account. The presence of this companion needs to be taken into account when analyzing the complex circumstellar environment of R CrA.
- ID:
- ivo://CDS.VizieR/J/A+A/518/L73
- Title:
- Youngest massive protostars in the LMC
- Short Name:
- J/A+A/518/L73
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We demonstrate the unique capabilities of Herschel to study very young luminous extragalactic young stellar objects (YSOs) by analyzing a central strip of the Large Magellanic Cloud obtained through the HERITAGE Science Demonstration Program. We combine PACS 100 and 160, and SPIRE 250, 350, and 500um photometry with 2MASS (1.25-2.17um) and Spitzer IRAC and MIPS (3.6-70um) to construct complete spectral energy distributions (SEDs) of compact sources. From these, we identify 207 candidate embedded YSOs in the observed region, ~40% never-before identified. We discuss their position in far-infrared color-magnitude space, comparing with previously studied, spectroscopically confirmed YSOs and maser emission. All have red colors indicating massive cool envelopes and great youth. We analyze four example YSOs, determining their physical properties by fitting their SEDs with radiative transfer models. Fitting full SEDs including the Herschel data requires us to increase the size and mass of envelopes included in the models. This implies higher accretion rates (greater or equal to 10^-4^M_{sun}_/yr), in agreement with previous outflow studies of high-mass protostars. Our results show that Herschel provides reliable longwave SEDs of large samples of high-mass YSOs; discovers the youngest YSOs whose SEDs peak in Herschel bands; and constrains the physical properties and evolutionary stages of YSOs more precisely than was previously possible.
- ID:
- ivo://CDS.VizieR/J/ApJ/726/18
- Title:
- Young intermediate-mass stars in W5
- Short Name:
- J/ApJ/726/18
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a survey of young intermediate-mass stars (age<5Myr, 1.5M_{sun}_<M*<=15M_{sun}_) in the W5 massive star-forming region. We use combined optical, near-infrared, and Spitzer Space Telescope photometry and optical spectroscopy to define a sample of stars of spectral types A and B and examine their infrared excess properties. We find objects with infrared excesses characteristic of optically thick disks, i.e., Herbig AeBe stars. These stars are rare: <1.5% of the entire spectroscopic sample of A and B stars, and absent among stars more massive than 2.4M_{sun}_. 7.5% of the A and B stars possess infrared excesses in a variety of morphologies that suggest their disks are in some transitional phase between an initial, optically thick accretion state and later evolutionary states. We identify four morphological classes based on the wavelength dependence of the observed excess emission above theoretical photospheric levels: (1) the optically thick disks; (2) disks with an optically thin excess over the wavelength range 2-24um, similar to that shown by Classical Be stars; (3) disks that are optically thin in their inner regions based on their infrared excess at 2-8um and optically thick in their outer regions based on the magnitude of the observed excess emission at 24um; (4) disks that exhibit empty inner regions (no excess emission at {lambda}<8um) and some measurable excess emission at 24um. A sub-class of disks exhibit no significant excess emission at {lambda}<=5.8um, have excess emission only in the Spitzer 8um band and no detection at 24um. We discuss these spectral energy distribution types, and suggest physical models for disks exhibiting these emission patterns and additional observations to test these theories.
- ID:
- ivo://CDS.VizieR/J/ApJ/525/466
- Title:
- Young low-mass stars and brown dwarfs in IC 348
- Short Name:
- J/ApJ/525/466
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- I present new results from a continuing program to identify and characterize the low-mass stellar and substellar populations in the young cluster IC 348 (0.5 - 10 Myr). Optical spectroscopy has revealed young objects with spectral types as late as M8.25. The intrinsic J-H and H-K colors of these sources are dwarflike, whereas the R-I and I-J colors appear intermediate between the colors of dwarfs and giants. Furthermore, the spectra from 6500 to 9500 {AA} are reproduced well with averages of standard dwarf and giant spectra, suggesting that such averages should be used in the classification of young late-type sources.
- ID:
- ivo://CDS.VizieR/J/A+A/549/A57
- Title:
- Young, massive star candidates in Sgr A*
- Short Name:
- J/A+A/549/A57
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Nuclear star clusters (NSCs) are ubiquitous at the centers of galaxies. They show mixed stellar populations and the spectra of many NSCs indicate recent events of star formation. However, it is impossible to resolve external NSCs in order to examine the relevant processes. The Milky Way NSC, on the other hand, is close enough to be resolved into its individual stars and presents therefore a unique template for NSCs in general. Young, massive stars have been found by systematic spectroscopic studies at projected distances R<~0.5pc from the supermassive black hole, Sagittarius A* (Sgr A*). In recent years, increasing evidence has been found for the presence of young, massive stars also at R>0.5pc. Our goal in this work is a systematic search for young, massive star candidates throughout the entire region within R~2.5pc of the black hole.
- ID:
- ivo://CDS.VizieR/J/A+AS/139/393
- Title:
- Young Massive Star Clusters. II.
- Short Name:
- J/A+AS/139/393
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Table 4 lists photometric data for Young Massive Star Clusters identified in a sample of 21 nearby galaxies. The photometric data have been corrected for Galactic foreground extinction. Each cluster is identified by the abbreviated NGC number of its host galaxy and an object number: nxxx-yyy is object number yyy in the galaxy NGC xxx. Effective cluster radii have been obtained by modeling the cluster images as MOFFAT15 functions convolved with the point-spread function measured on the CCD images.
- ID:
- ivo://CDS.VizieR/J/ApJ/695/511
- Title:
- Young massive stars in LHA 120-N 44
- Short Name:
- J/ApJ/695/511
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The HII complex N44 in the Large Magellanic Cloud (LMC) provides an excellent site to perform a detailed study of star formation in a mild starburst, as it hosts three regions of star formation at different evolutionary stages, and it is not as complicated and confusing as the 30 Doradus giant HII region. We have obtained Spitzer Space Telescope observations and complementary ground-based 4m uBVIJK observations of N44 to identify candidate massive young stellar objects (YSOs). We further classify the YSOs into Types I, II, and III, according to their spectral energy distributions (SEDs). In our sample of 60 YSO candidates, ~65% of them are resolved into multiple components or extended sources in high-resolution ground-based images.
- ID:
- ivo://CDS.VizieR/J/MNRAS/454/593
- Title:
- Young moving groups in solar neighbourhood
- Short Name:
- J/MNRAS/454/593
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a self-consistent, absolute isochronal age scale for young (<~200Myr), nearby (<~100pc) moving groups in the solar neighbourhood based on homogeneous fitting of semi-empirical pre-main-sequence model isochrones using the {tau}^2^ maximum-likelihood fitting statistic of Naylor & Jeffries (2006MNRAS.373.1251N) in the M_V_, V-J colour-magnitude diagram. The final adopted ages for the groups are as follows: 149^+51^_-19_Myr for the AB Dor moving group, 24+/-3Myr for the {beta} Pic moving group (BPMG), 45^+11^_-7_Myr for the Carina association, 42^+6^_-4_Myr for the Columba association, 11+/-3Myr for the {eta} Cha cluster, 45+/-4Myr for the Tucana-Horologium moving group (Tuc-Hor), 10+/-3Myr for the TW Hya association and 22^+4^_-3_Myr for the 32 Ori group. At this stage we are uncomfortable assigning a final, unambiguous age to the Argus association as our membership list for the association appears to suffer from a high level of contamination, and therefore it remains unclear whether these stars represent a single population of coeval stars. Our isochronal ages for both the BPMG and Tuc-Hor are consistent with recent lithium depletion boundary (LDB) ages, which unlike isochronal ages, are relatively insensitive to the choice of low-mass evolutionary models. This consistency between the isochronal and LDB ages instils confidence that our self-consistent, absolute age scale for young, nearby moving groups is robust, and hence we suggest that these ages be adopted for future studies of these groups. Software implementing the methods described in this study is available from http://www.astro.ex.ac.uk/people/timn/tau-squared/.
- ID:
- ivo://CDS.VizieR/J/A+A/507/1485
- Title:
- Young (proto)stellar population in L1630
- Short Name:
- J/A+A/507/1485
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the young (proto)stellar population in NGC 2023 and the L 1630 molecular cloud bordering the H II region IC 434, using Spitzer IRAC and MIPS archive data, JCMT SCUBA imaging and spectroscopy as well as targeted BIMA observations of one of the Class 0 protostars, NGC 2023 MM 1. We study the distribution of gas, dust and young stars in this region to see where stars are forming, whether the expansion of the H II region has triggered star formation, and whether dense cold cores have already formed stars. We have performed photometry of all IRAC and MIPS images, and used color-color diagrams to identify and classify all young stars seen within a 22'x26' field along the boundary between IC 434 and L 1630.