- ID:
- ivo://CDS.VizieR/J/AJ/109/960
- Title:
- Young star clusters in The Antennae
- Short Name:
- J/AJ/109/960
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- New high-resolution images of the disks of NGC 4038/4039 obtained with the Wide Field Camera of the Hubble Space Telescope (HST) are presented. NGC 4038/4039, nicknamed "The Antennae," is a prototypical example of a pair of colliding galaxies believed to be at an early stage of a merger. Down to the limiting magnitude of V~23mag, the HST images reveal a population of over 700 blue pointlike objects within the disks. The mean absolute magnitude of these objects is M_V_=-11mag, with the brightest objects reaching M_V_~-15. Their mean apparent color indices are U-V=-0.7mag and V-I=0.8mag on the Johnson UVI passband system, while their mean indices corrected for internal reddening are (U-V)_0_=-1.0mag and (V-I)_0_=0.5. Their mean effective radius, determined from slightly resolved images, is 18pc (for H0=50km/s/Mpc). Based on their luminosities and resolution, most of these objects cannot be individual stars, but are likely young compact star clusters. The brighter ones are similar to the objects found in NGC 1275 and NGC 7252, which appear to be young globular clusters formed during recent galaxy mergers. Based on their U-V and V-I colors, the brightest, bluest clusters of NGC 4038/4039 appear to be less than 10Myr old. Most of these bright clusters are relatively tightly clustered themselves, with typically a dozen individual clusters belonging to a complex identified as a giant H II region from ground-based observations. The cluster luminosity function (LF) is approximately a power law, {Phi}(L)dL is proportional to L^(-1.78+/-0.05)^dL, with no hint of a turnover at fainter magnitudes. This power-law shape agrees with the LF of Magellanic Cloud clusters and Galactic open clusters, but differs from the LF of old globular cluster systems that is typically Gaussian with a FWHM of ~3mag. Possible explanations for this apparent difference include: (1) We have not observed faint enough to see the turnover, (2) the initial LF of star clusters is a power law but the fainter objects dissolve with time, (3) conditions at the present epoch favor the formation of a wide range of cluster masses while conditions at earlier epochs favored the formation of massive clusters, and (4) the NGC 4038/4039 clusters may not evolve into normal globular clusters. Besides the blue clusters, we also find about a dozen extremely red objects with V-I>3.0. The highest number density of these red objects is found in the SE quadrant, where star formation appears to be most recent. We propose that these objects may be very young star clusters still embedded in their placental dust cocoons.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/794/124
- Title:
- Young star forming region NGC 2264 Spitzer sources
- Short Name:
- J/ApJ/794/124
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Spitzer 3.6, 4.5, 5.8, 8.0, and 24 {mu}m images of the Mon OB1 East giant molecular cloud, which contains the young star forming region NGC 2264, as well as more extended star formation. With Spitzer data and Two Micron All Sky Survey photometry, we identify and classify young stellar objects (YSOs) with dusty circumstellar disks and/or envelopes in Mon OB1 East by their infrared-excess emission and study their distribution with respect to cloud material. We find a correlation between the local surface density of YSOs and column density of molecular gas as traced by dust extinction that is roughly described as a power law in these quantities. NGC 2264 follows a power-law index of ~2.7, exhibiting a large YSO surface density for a given gas column density. Outside of NGC 2264 where the surface density of YSOs is lower, the power law is shallower and the region exhibits a larger gas column density for a YSO surface density, suggesting the star formation is more recent. In order to measure the fraction of cloud members with circumstellar disks/envelopes, we estimate the number of diskless pre-main-sequence stars by statistical removal of background star detections. We find that the disk fraction of the NGC 2264 region is 45%, while the surrounding, more distributed regions show a disk fraction of 19%. This may be explained by the presence of an older, more dispersed population of stars. In total, the Spitzer observations provide evidence for heterogenous, non-coeval star formation throughout the Mon OB1 cloud.
- ID:
- ivo://CDS.VizieR/J/A+A/485/931
- Title:
- Young stars and brown dwarfs in Ori OB1b
- Short Name:
- J/A+A/485/931
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present here exhaustive lists of known young stars and new candidate members around Alnilam and Mintaka in the Ori OB1b association as well as of fore- and background sources. A total of 133 stars display features of extreme youth, including early spectral types, lithium in absorption, or mid-infrared flux excess. Other two young brown dwarf and 289 star candidates have been identified from an optical/near-infrared colour-magnitude diagram. We list additional 74 known objects that might belong to the association. This compilation of tables can serve as an input for characterisation of the stellar and high-mass substellar populations in the Orion Belt.
- ID:
- ivo://CDS.VizieR/J/MNRAS/403/545
- Title:
- Young stars in Cepheus OB3b
- Short Name:
- J/MNRAS/403/545
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a photometric study of I-band variability in the young association Cepheus OB3b. The study is sensitive to periodic variability on time-scales of less than a day, to more than 20d. After rejection of contaminating objects using V, I, R and narrow-band H{alpha} photometry, we find 475 objects with measured rotation periods, which are very likely pre-main-sequence members of the Cep OB3b star-forming region.
- ID:
- ivo://CDS.VizieR/J/AJ/130/188
- Title:
- Young stars in Trumpler 37 and NGC 7160
- Short Name:
- J/AJ/130/188
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of MMT observations of young stars for our study of protoplanetary disks at ages 1-10Myr in two young clusters located in the Cepheus OB2 region: Trumpler 37 (embedded in the HII region IC 1396) and NGC 7160. Using low-resolution optical spectra from the Hectospec multifiber spectrograph, we have tripled the number of known low-mass cluster members, identifying 130 new members in Tr 37 and 30 in NGC 7160. We use indicators of youth (Li absorption at 6707{AA}) and accretion/chromospheric activity (H{alpha} emission) to identify and classify the low-mass cluster members. We derive spectral types for all the low-mass candidates and calculate the individual extinctions and the average over the clusters.
- ID:
- ivo://CDS.VizieR/J/A+A/557/A29
- Title:
- Young stellar clusters in the Rosette
- Short Name:
- J/A+A/557/A29
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Rosette complex is a well studied region of the galactic plane which presents the apparent characteristics of a triggered star forming region. This is however still debated as no strong evidence corroborates this statement. We focused on characterizing the young stellar population in the Rosette to improve our understanding of the processes that regulate the star formation in this region. We propose an original method relying on the joint analysis of the star color and density in the near-infrared. It yielded the identification of 13 clusters, 2 of them being new discoveries. Based on their spectral index from UKIDSS K-band to WISE W3-band, we identified 535 YSO candidates within these cluster boundaries.
- ID:
- ivo://CDS.VizieR/J/ApJ/762/88
- Title:
- Young stellar kinematic group candidate members
- Short Name:
- J/ApJ/762/88
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new method based on a Bayesian analysis to identify new members of nearby young kinematic groups. The analysis minimally takes into account the position, proper motion, magnitude, and color of a star, but other observables can be readily added (e.g., radial velocity, distance). We use this method to find new young low-mass stars in the {beta} Pictoris and AB Doradus moving groups and in the TW Hydrae, Tucana-Horologium, Columba, Carina, and Argus associations. Starting from a sample of 758 mid-K to mid-M (K5V-M5V) stars showing youth indicators such as H{alpha} and X-ray emission, our analysis yields 214 new highly probable low-mass members of the kinematic groups analyzed. One is in TW Hydrae, 37 in {beta} Pictoris, 17 in Tucana-Horologium, 20 in Columba, 6 in Carina, 50 in Argus, 32 in AB Doradus, and the remaining 51 candidates are likely young but have an ambiguous membership to more than one association. The false alarm rate for new candidates is estimated to be 5% for {beta} Pictoris and TW Hydrae, 10% for Tucana-Horologium, Columba, Carina, and Argus, and 14% for AB Doradus. Our analysis confirms the membership of 58 stars proposed in the literature. Firm membership confirmation of our new candidates will require measurement of their radial velocity (predicted by our analysis), parallax, and lithium 6708{AA} equivalent width. We have initiated these follow-up observations for a number of candidates, and we have identified two stars (2MASSJ01112542+1526214, 2MASSJ05241914-1601153) as very strong candidate members of the {beta} Pictoris moving group and one strong candidate member (2MASSJ05332558-5117131) of the Tucana-Horologium association; these three stars have radial velocity measurements confirming their membership and lithium detections consistent with young age.
- ID:
- ivo://CDS.VizieR/J/A+A/572/A89
- Title:
- Young stellar object candidates toward Orion
- Short Name:
- J/A+A/572/A89
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We analyze 359 ultraviolet tiles from the All Sky Imaging Survey of the space mission GALEX covering roughly 400 square degrees toward the Orion star-forming region. There are a total of 1555174 ultraviolet sources that were cross-matched with other catalogs (2MASS, UCAC4, SDSS, DENIS, CMC15, and WISE) to produce a list of 290717 reliable sources with a wide range of photometric information. Using different color selection criteria, we identify 111 young stellar object candidates showing both ultraviolet and infrared excesses, of which 81 are new identifications. We discuss the spatial distribution, the spectral energy distributions, and other physical properties of these stars. Their properties are, in general, compatible with those expected for T Tauri stars. This population of TTS candidates is widely dispersed around the Orion molecular cloud.
- ID:
- ivo://CDS.VizieR/J/AJ/159/200
- Title:
- Young stellar objects in Lupus star-forming region
- Short Name:
- J/AJ/159/200
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The identification and characterization of stellar members within a star-forming region are critical to many aspects of star formation, including formalization of the initial mass function, circumstellar disk evolution, and star formation history. Previous surveys of the Lupus star-forming region have identified members through infrared excess and accretion signatures. We use machine learning to identify new candidate members of Lupus based on surveys from two space-based observatories: ESA's Gaia and NASA's Spitzer. Astrometric measurements from Gaia's Data Release 2 and astrometric and photometric data from the Infrared Array Camera on the Spitzer Space Telescope, as well as from other surveys, are compiled into a catalog for the random forest (RF) classifier. The RF classifiers are tested to find the best features, membership list, non-membership identification scheme, imputation method, training set class weighting, and method of dealing with class imbalance within the data. We list 27 candidate members of the Lupus star-forming region for spectroscopic follow-up. Most of the candidates lie in Clouds V and VI, where only one confirmed member of Lupus was previously known. These clouds likely represent a slightly older population of star formation.
- ID:
- ivo://CDS.VizieR/J/MNRAS/419/1887
- Title:
- Young stellar objects in NGC 6823
- Short Name:
- J/MNRAS/419/1887
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- NGC 6823 is a young open cluster that lies at a distance of ~2kpc in the Vulpecula OB1 association. Previous studies using CCD photometry and spectroscopy have identified a Trapezium system of bright O- and B-type stars at its centre, along with several massive O-, B- and A-type stars in the cluster. We present optical VRI and near-infrared JHK photometric observations, complemented with Spitzer/Infrared Array Camera archival data, with an aim to identify the young low-mass population and the disc candidates in this region. Our survey reaches down to I~22mag and K_s_~18mag. There is significant differential reddening within the cluster. We find a bimodal distribution for A_V_, with a peak at ~3mag and a broader peak at ~10mag. We have classified the sources based on the [4.5]-[8] colour, which is least affected by extinction. We find a ~20 per cent fraction of Class I/Class II young stellar objects (YSOs) in the cluster, while a large 80 per cent fraction of the sources have a Class III classification. We have made use of the INT Photometric H{alpha} Survey (IPHAS) in order to probe the strength in H{alpha} emission for this large population of Class III sources. Nearly all of the Class III objects have photospheric (r'-H{alpha}) colours, implying an absence of H{alpha} in emission. This large population of Class III sources is thus likely the extinct field star population rather than the discless YSOs in the cluster. There is a higher concentration of the Class I/II systems in the eastern region of the cluster and close to the central Trapezium. The western part of the cluster mostly contains Class III/field stars and seems devoid of disc sources. We find evidence of a pre-main-sequence population in NGC 6823, in addition to an upper main-sequence population. The pre-main-sequence population mainly consists of young disc sources with ages between ~1 and 5Myr, and at lower masses of ~0.1-0.4M_{sun}_. There may be a possible mass-dependent age spread in the cluster, with the older stars being more massive than the younger ones. The presence of young disc sources in NGC 6823 indicates similar star formation properties in the outer regions of the Galaxy as observed for young clusters in the solar neighbourhood.