- ID:
- ivo://CDS.VizieR/J/ApJ/575/354
- Title:
- Young stellar objects in the NGC 1333
- Short Name:
- J/ApJ/575/354
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- NGC 1333, a highly active star formation region within the Perseus molecular cloud complex, has been observed with the ACIS-I detector on board the Chandra X-Ray Observatory. In our image with a sensitivity limit of ~19^28^erg/s, we detect 127 X-ray sources, most with subarcsecond positional accuracy. While 32 of these sources appear to be foreground stars and extragalactic background, 95 X-ray sources are Identified with known cluster members.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/452/3508
- Title:
- Young stellar structures in NGC 6503
- Short Name:
- J/MNRAS/452/3508
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a detailed clustering analysis of the young stellar population across the star-forming ring galaxy NGC 6503, based on the deep Hubble Space Telescope photometry obtained with the Legacy ExtraGalactic UV Survey. We apply a contour-based map analysis technique and identify in the stellar surface density map 244 distinct star-forming structures at various levels of significance. These stellar complexes are found to be organized in a hierarchical fashion with 95 percent being members of three dominant super-structures located along the star-forming ring. The size distribution of the identified structures and the correlation between their radii and numbers of stellar members show power-law behaviours, as expected from scale-free processes. The self-similar distribution of young stars is further quantified from their autocorrelation function, with a fractal dimension of ~1.7 for length-scales between ~20pc and 2.5kpc. The young stellar radial distribution sets the extent of the star-forming ring at radial distances between 1 and 2.5kpc. About 60 percent of the young stars belong to the detected stellar structures, while the remaining stars are distributed among the complexes, still inside the ring of the galaxy. The analysis of the time-dependent clustering of young populations shows a significant change from a more clustered to a more distributed behaviour in a time-scale of ~60Myr. The observed hierarchy in stellar clustering is consistent with star formation being regulated by turbulence across the ring. The rotational velocity difference between the edges of the ring suggests shear as the driving mechanism for this process. Our findings reveal the interesting case of an inner ring forming stars in a hierarchical fashion.
- ID:
- ivo://CDS.VizieR/J/ApJ/848/97
- Title:
- Young stellar variables with KELT for K2. I.
- Short Name:
- J/ApJ/848/97
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- One of the most well-studied young stellar associations, Taurus-Auriga, was observed by the extended Kepler mission, K2, in the spring of 2017. K2 Campaign 13 (C13) is a unique opportunity to study many stars in this young association at high photometric precision and cadence. Using observations from the Kilodegree Extremely Little Telescope (KELT) survey, we identify "dippers," aperiodic and periodic variables among K2 C13 target stars. This release of the KELT data provides the community with long-time baseline observations to assist in the understanding of the more exotic variables in the association. Transient-like phenomena on timescales of months to years are known characteristics in the light curves of young stellar objects, making contextual pre- and post-K2 observations critical to understanding their underlying processes. We are providing a comprehensive set of the KELT light curves for known Taurus-Auriga stars in K2 C13. The combined data sets from K2 and KELT should permit a broad array of investigations related to star formation, stellar variability, and protoplanetary environments.
- ID:
- ivo://CDS.VizieR/J/ApJ/457/L99
- Title:
- 25yr CaII-HK observations of F-K nearby stars
- Short Name:
- J/ApJ/457/L99
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We find a significant correlation between the magnetic and rotational moments for a sample of 112 lower main-sequence stars. The rotational moment is calculated from measurements of the rotation period in most of the stars (not from the projected rotational velocity inferred from Doppler broadening). The magnetic moment is computed from a database of homogeneous measurements of the mean level of Ca II H and K emission fluxes sampled for most of the stars over an interval of 25yr. The slope connecting the logarithm of the magnetic moment and the logarithm of the rotational moment is about +0.5-0.6, with a Pearson correlation coefficient of about +0.9. The scatter of points from the mean relation has a component that is natural and caused by decade-long surface variability.
- ID:
- ivo://CDS.VizieR/J/ApJ/896/L19
- Title:
- 16yr LC of TXS 0506+056 from MASTER networks
- Short Name:
- J/ApJ/896/L19
- Date:
- 07 Dec 2021
- Publisher:
- CDS
- Description:
- We present the earliest astronomical observation of a high-energy neutrino error box of which the variability was discovered after high-energy-neutrino detection. The one robotic telescope of the MASTER global international networks automatically imaged the error box of the very high-energy-neutrino event IceCube-170922A. Observations were carried out in minutes after the IceCube-170922A neutrino event was detected by the IceCube observatory at the South Pole. MASTER found the blazar TXS 0506+056 to be in the off-state after one minute and then switched to the on-state no later than two hours after the event. The effect is observed at a 50{sigma} significance level. We also present own a unique 16yr light curve of blazar TXS 0506+056 (518 data set).
- ID:
- ivo://CDS.VizieR/J/ApJS/237/30
- Title:
- 6-yr light curves of 10 blazars
- Short Name:
- J/ApJS/237/30
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We carried out multi-color optical monitoring of a sample of 10 blazars from 2005 to 2011. The sample contains 3 LBLs, 2 IBLs, 4 HBLs, and 1 FSRQ. Our monitoring focused on the long-term variability and the sample included nine BL Lac objects and one flat-spectrum radio quasar (FSRQ). A total of 14,799 data points were collected. This is one of the largest optical databases for a sample of 10 blazars. All objects showed significant variability except for OT 546. Because of the low sampling on each single night, only BL Lacertae were observed to have intraday variability on 2006 November 6. Most BL Lac objects showed a bluer-when-brighter (BWB) chromatism, while the FSRQ, 3C 454.3, displayed a redder-when-brighter trend. The BWB color behaviors of most BL Lacs can be at least partly attributed to the trend of increasing variation amplitude with increasing frequency observed in these objects. The average spectral index of LBLs is around 1.5, as expected from the model dominated by synchrotron self-Compton loss. The optical emission of HBL is probably contaminated by the thermal emission from the host galaxies. Correlation analysis did not reveal any time delay between variations at different wavelengths.
- ID:
- ivo://CDS.VizieR/J/ApJ/878/7
- Title:
- 2yr obs. of JHK variability of stars in Tr37
- Short Name:
- J/ApJ/878/7
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have monitored nearly a square degree in IC 1396A/Tr 37 over 21 epochs extending over 2014-2016 for sources variable in the JHK bands. In our data, 65%+/-8% of previously identified cluster members show variations, compared with <=0.3% of field stars. We identify 119 members of Tr 37 on the basis of variability, forming an unbiased sample down to the brown dwarf regime. The K-band luminosity function in Tr 37 is similar to that of IC 348 but shifted to somewhat brighter values, implying that the K- and M-type members of Tr 37 are younger than those in IC 348. We introduce methods to classify the causes of variability, based on behavior in the color-color and color-magnitude diagrams. Accretion hot spots cause larger variations at J than at K with substantial scatter in the diagrams; there are at least a dozen, with the most active resembling EXors. Eleven sources are probably dominated by intervention of dust clumps in their circumstellar disks, with color behavior indicating the presence of grains larger than for interstellar dust, presumably due to grain growth in their disks. Thirteen sources have larger variations at K than at J or H. For 11 of them, the temperature fitted to the variable component is very close to 2000K, suggesting that the changes in output are caused by turbulence at the inner rim of the circumstellar disk exposing previously protected populations of grains.
- ID:
- ivo://CDS.VizieR/J/ApJ/859/145
- Title:
- 20yr obs. of the spectroscopic binary EC 20117-4014
- Short Name:
- J/ApJ/859/145
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Among the competing evolution theories for subdwarf-B (sdB) stars is the binary evolution scenario. EC 20117-4014 (=V4640 Sgr) is a spectroscopic binary system consisting of a pulsating sdB star and a late F main-sequence companion; however, the period and the orbit semimajor axes have not been precisely determined. This paper presents orbital characteristics of the EC 20117-4014 binary system using 20 years of photometric data. Periodic observed minus calculated (O-C) variations were detected in the two highest-amplitude pulsations identified in the EC 20117-4014 power spectrum, indicating the binary system's precise orbital period (P=792.3d) and the light-travel-time amplitude (A=468.9s). This binary shows no significant orbital eccentricity, and the upper limit of the eccentricity is 0.025 (using 3{sigma} as an upper limit). This upper limit of the eccentricity is the lowest among all wide sdB binaries with known orbital parameters. This analysis indicated that the sdB is likely to have lost its hydrogen envelope through stable Roche lobe overflow, thus supporting hypotheses for the origin of sdB stars. In addition to those results, the underlying pulsation period change obtained from the photometric data was dP/dt=5.4(+/-0.7)x10^-14^d.d^-1^, which shows that the sdB is just before the end of the core helium-burning phase.
- ID:
- ivo://CDS.VizieR/J/ApJ/801/79
- Title:
- 10yr of GJ176 radial velocities & VR photometry
- Short Name:
- J/ApJ/801/79
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an in-depth analysis of stellar activity and its effects on radial velocity (RV) for the M2 dwarf GJ 176 based on spectra taken over 10yr from the High Resolution Spectrograph on the Hobby-Eberly Telescope. These data are supplemented with spectra from previous observations with the HIRES and HARPS spectrographs, and V- and R-band photometry taken over six years at the Dyer and Fairborn observatories. Previous studies of GJ 176 revealed a super-Earth exoplanet in an 8.8-day orbit. However, the velocities of this star are also known to be contaminated by activity, particularly at the 39-day stellar rotation period. We have examined the magnetic activity of GJ 176 using the sodium I D lines, which have been shown to be a sensitive activity tracer in cool stars. In addition to rotational modulation, we see evidence of a long-term trend in our Na I D index, which may be part of a long-period activity cycle. The sodium index is well correlated with our RVs, and we show that this activity trend drives a corresponding slope in RV. Interestingly, the rotation signal remains in phase in photometry, but not in the spectral activity indicators. We interpret this phenomenon as the result of one or more large spot complexes or active regions which dominate the photometric variability, while the spectral indices are driven by the overall magnetic activity across the stellar surface. In light of these results, we discuss the potential for correcting activity signals in the RVs of M dwarfs.
- ID:
- ivo://CDS.VizieR/J/ApJ/851/132
- Title:
- ~30yr of opt. spectroscopy & Vmag obs. of GW Ori
- Short Name:
- J/ApJ/851/132
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present spatially and spectrally resolved Atacama Large Millimeter/submillimeter Array (ALMA) observations of gas and dust orbiting the pre-main-sequence hierarchical triple-star system GW Ori. A forward modeling of the ^13^CO and C^18^O J=2-1 transitions permits a measurement of the total stellar mass in this system, 5.29+/-0.09M_{sun}_, and the circumtriple disk inclination, 137.6{deg}+/-2.0{deg}. Optical spectra spanning a 35yr period were used to derive new radial velocities and, coupled with a spectroscopic disentangling technique, revealed that the A and B components of GW Ori form a double-lined spectroscopic binary with a period of 241.50+/-0.05d; a tertiary companion orbits that inner pair with a period of 4218+/-50d. Combining the results from the ALMA data and the optical spectra with three epochs of astrometry in the literature, we constrain the individual stellar masses in the system (M_A_~2.7M_{sun}_, M_B_~1.7M_{sun}_, M_C_~0.9M_{sun}_) and find strong evidence that at least one of the stellar orbital planes (and likely both) is misaligned with the disk plane by as much as 45{deg}. A V-band light curve spanning 30yr reveals several new ~30-day eclipse events 0.1-0.7mag in depth and a 0.2mag sinusoidal oscillation that is clearly phased with the AB-C orbital period. Taken together, these features suggest that the A-B pair may be partially obscured by material in the inner disk as the pair approaches apoastron in the hierarchical orbit. Lastly, we conclude that stellar evolutionary models are consistent with our measurements of the masses and basic photospheric properties if the GW Ori system is ~1Myr old.