- ID:
- ivo://CDS.VizieR/J/ApJ/768/172
- Title:
- Kinematic analysis of red giant in M31 dSphs
- Short Name:
- J/ApJ/768/172
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a homogeneous kinematic analysis of red giant branch stars within 18 of the 28 Andromeda dwarf spheroidal (dSph) galaxies, obtained using the Keck I/LRIS and Keck II/DEIMOS spectrographs. Based on their g-i colors (taken with the CFHT/MegaCam imager), physical positions on the sky, and radial velocities, we assign probabilities of dSph membership to each observed star. Using this information, the velocity dispersions, central masses, and central densities of the dark matter halos are calculated for these objects, and compared with the properties of the Milky Way dSph population. We also measure the average metallicity ([Fe/H]) from the co-added spectra of member stars for each M31 dSph and find that they are consistent with the trend of decreasing [Fe/H] with luminosity observed in the Milky Way population. We find that three of our studied M31 dSphs appear as significant outliers in terms of their central velocity dispersion, And XIX, XXI, and XXV, all of which have large half-light radii (>~700pc) and low velocity dispersions ({sigma}_v_<5km/s). In addition, And XXV has a mass-to-light ratio within its half-light radius of just [M/L]_half_=10.3_-6.7_^7.0^, making it consistent with a simple stellar system with no appreciable dark matter component within its 1{sigma} uncertainties. We suggest that the structure of the dark matter halos of these outliers have been significantly altered by tides.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/777/42
- Title:
- Kinematic and HI data for the NFGS
- Short Name:
- J/ApJ/777/42
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We relate transitions in galaxy structure and gas content to refueling, here defined to include both the external gas accretion and the internal gas processing needed to renew reservoirs for star formation. We analyze two z=0 data sets: a high-quality ~200 galaxy sample (the Nearby Field Galaxy Survey, data release herein) and a volume-limited ~3000 galaxy sample with reprocessed archival data. Both reach down to baryonic masses ~10^9^M_{sun}_ and span void-to-cluster environments. Two mass-dependent transitions are evident: (1) below the "gas-richness threshold" scale (V~125km/s), gas-dominated quasi-bulgeless Sd-Im galaxies become numerically dominant; while (2) above the "bimodality" scale (V~200km/s), gas-starved E/S0s become the norm. Notwithstanding these transitions, galaxy mass (or V as its proxy) is a poor predictor of gas-to-stellar mass ratio M_gas_/M_*_. Instead, M_gas_/M_*_ correlates well with the ratio of a galaxy's stellar mass formed in the last Gyr to its preexisting stellar mass, such that the two ratios have numerically similar values. This striking correspondence between past-averaged star formation and current gas richness implies routine refueling of star-forming galaxies on Gyr timescales. We argue that this refueling underlies the tight M_gas_/M_*_ versus color correlations often used to measure "photometric gas fractions." Furthermore, the threshold and bimodality scale transitions reflect mass-dependent demographic shifts between three refueling regimes--accretion-dominated, processing-dominated, and quenched. In this picture, gas-dominated dwarfs are explained not by inefficient star formation but by overwhelming gas accretion, which fuels stellar mass doubling in <~1Gyr. Moreover, moderately gas-rich bulged disks such as the Milky Way are transitional, becoming abundant only in the narrow range between the threshold and bimodality scales.
- ID:
- ivo://CDS.VizieR/J/AJ/162/146
- Title:
- Kinematic and photometry of King 11 with Gaia EDR3
- Short Name:
- J/AJ/162/146
- Date:
- 21 Mar 2022 00:29:39
- Publisher:
- CDS
- Description:
- This paper presents an investigation of an old age open cluster King11 using Gaia's Early Data Release 3 data. Considering the stars with membership probability (P{mu})>90%, we identified 676 most probable cluster members within the cluster's limiting radius. The mean proper motion for King11 is determined as: {mu}x=-3.391{+/-}0.006 and {mu}y=-0.660{+/-}0.004mas/yr. The blue straggler stars of King11 show a centrally concentrated radial distribution. The values of limiting radius, age, and distance are determined as 18.51, 3.63{+/-}0.42Gyr, and 3.33{+/-}0.15kpc, respectively. The cluster's apex coordinates (A=267.84{+/-}1.01, D=-27.48{+/-}1.03) are determined using the apex diagram method and verified using the ({mu}U, {mu}T) diagram. We also obtained the orbit that the cluster follows in the Galaxy and estimated its tentative birthplace in the disk. The resulting spatial velocity of King 11 is 60.2{+/-}2.16km/s. A significant oscillation along the Z coordinate up to 0.556{+/-}0.022kpc is determined.
- ID:
- ivo://CDS.VizieR/J/other/ApSS/365.112
- Title:
- Kinematic data for high luminosity stars
- Short Name:
- J/other/ApSS/365
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We calculated the median parallaxes for 47 OB associations including at least 10 stars with known Gaia DR2 parallaxes. A comparison between trigonometric and photometric parallaxes of OB associations reveals a zero-point offset of {Delta}_{pi}_=-0.11+/-0.04mas indicating that Gaia DR2 parallaxes are, on average, underestimated and the distances derived from them are overestimated. The correction of {Delta}_{pi}=-0.11 mas is consistent with the estimate that Arenou et al. (2018A&A...616A..17A) obtained for bright stars. An analysis of parallaxes of OB associations and high-luminosity field stars confirms our previous conclusion (Dambis et al., 2001AstL...27...58D) that the distance scale for OB stars established by Blaha and Humphreys (1989AJ.....98.1598B) must be reduced by 10-20%. Spurious systematic motions of 10-20km/s at the distances of 2-3kpc from the Sun are found to arise from the use of the uncorrected Gaia DR2 parallaxes.
- ID:
- ivo://CDS.VizieR/J/MNRAS/472/3887
- Title:
- Kinematic data for stars in OB-associations
- Short Name:
- J/MNRAS/472/3887
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use stellar proper motions from the catalog TGAS (2016, Cat. I/337) to study the kinematics of OB-associations identified by Blaha and Humphreys (1989AJ.....98.1598B). The TGAS proper motions of OB-associations generally agree well with the Hipparcos proper motions. The parameters of the Galactic rotation curve obtained with TGAS and Hipparcos proper motions agree within the errors. The average internal velocity dispersion calculated for 18 OB-associations with more than 10 TGAS stars is sigma_v_=3.9km/s, which is considerably smaller, by a factor of 0.4, than the velocity dispersions derived from Hipparcos data. The effective contribution from binary OB-stars into the velocity dispersion sigma_v inside OB-associations is sigma_b_=1.2km/s. The median virial and stellar masses of OB-associations are equal to 7.1x10^5^ and 9.0x10^3^M_{sun}_, respectively. Thus OB-associations must be unbound objects provided they do not include a lot of dense gas. The median star-formation efficiency is epsilon=2.1%. Nearly one third of stars of OB-associations must lie outside their tidal radius. We found that the Per OB1 and Car OB1 associations are expanding with the expansion started in a small region of 11-27pc 7-10Myr ago. The average expansion velocity is 6.3km/s.
- ID:
- ivo://CDS.VizieR/J/ApJ/867/93
- Title:
- Kinematic data of YNMGs from RAVE & Gaia
- Short Name:
- J/ApJ/867/93
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The purpose of this study is the identification of young (1<age<100Myr), nearby (d<=100pc) moving groups (YNMGs) through their kinematic signature. YNMGs could be the result of the recent dispersal of young embedded clusters, such that they still represent kinematically cold groups, carrying the residual motion of their parental cloud. Using the fact that a large number (~14000) of the RAVE sources with evidence of chromospheric activity also present signatures of stellar youth, we selected a sample of solar-type sources with the highest probability of chromospheric activity to look for common kinematics. We made use of radial velocity information from RAVE and astrometric parameters from GAIA DR2 to construct a 6D position-velocity vector catalog for our full sample. We developed a method based on the grouping of stars with similar orientation of their velocity vectors, which we call the Cone Method Sampling. Using this method, we detected 646 sources with high significance in the velocity space, with respect to the average orientation of artificial distributions made from a purely Gaussian velocity ellipsoid with null vertex deviation. We compared this sample of highly significant sources with a catalog of YNMGs reported in previous studies, which yield 75 confirmed members. From the remaining sample, about 50% of the sources have ages younger than 100Myr, which indicate they are highly probable candidates to be new members of identified or even other YNMGs in the solar neighborhood.
- ID:
- ivo://CDS.VizieR/J/A+A/658/A22
- Title:
- Kinematic properties of white dwarfs
- Short Name:
- J/A+A/658/A22
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Kinematic and chemical tagging of stellar populations have both revealed much information on the past and recent history of the Milky Way, including its formation history, merger events, and mixing of populations across the Galactic disk and halo. We present the first detailed 3D kinematic analysis of a sample of 3133 white dwarfs that used Gaia astrometry plus radial velocities, which were measured either by Gaia or by ground-based spectroscopic observations. The sample includes either isolated white dwarfs that have direct radial velocity measurements, or white dwarfs that belong to common proper motion pairs that contain nondegenerate companions with available radial velocities. A subset of common proper motion pairs also have metal abundances that have been measured by large-scale spectroscopic surveys or by our own follow-up observations. We used the white dwarfs as astrophysical clocks by determining their masses and total ages through interpolation with dedicated evolutionary models. We also used the nondegenerate companions in common proper motions to chemically tag the population. Combining accurate radial velocities with Gaia astrometry and proper motions, we derived the velocity components of our sample in the Galactic rest frame and their Galactic orbital parameters. The sample is mostly located within ~300 pc from the Sun. It predominantly contains (90-95%) thin-disk stars with almost circular Galactic orbits, while the remaining 5-10% of stars have more eccentric trajectories and belong to the thick disk. We identified seven isolated white dwarfs and two common proper motion pairs as halo members. We determined the age - velocity dispersion relation for the thin-disk members, which agrees with previous results that were achieved from different white dwarf samples without published radial velocities. The age - velocity dispersion relation shows signatures of dynamical heating and saturation after 4-6 Gyr. We observed a mild anticorrelation between [Fe/H] and the radial component of the average velocity dispersion, showing that dynamical mixing of populations takes place in the Galactic disk, as was detected through the analysis of other samples of FGK stars. We have shown that a white dwarf sample with accurate 3D kinematics and well-measured chemical compositions enables a wider understanding of their population in the solar neighborhood and its connection with the Galactic chemodynamics. The legacy of existing spectroscopic surveys will be boosted by the availability of upcoming larger samples of white dwarfs and common proper motion pairs with more uniform high-quality data.
- ID:
- ivo://CDS.VizieR/J/A+A/404/913
- Title:
- Kinematics and HR Diagrams of Southern Young Stars
- Short Name:
- J/A+A/404/913
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the spatial distribution, the space velocities and age distribution of the pre-main sequence (PMS) stars belonging to Ophiuchus, Lupus and Chamaeleon star-forming regions (SFRs), and of the young early-type star members of the Scorpius-Centaurus (Sco-Cen) OB association. These young stellar associations extend over the galactic longitude range from 280 to 360 degrees, and are at a distance interval of around 100 and 200pc. We present a compilation of PMS and early-type stars members of the investigated SFRs and OB associations. For these lists of stars we give the data used for the study of kinematic properties: positions, adopted distances, proper motions and radial velocities (whenever available), and the basic stellar data, used for the construction of Hertzsprung-Russel diagrams. All data have been taken from the literature. We also present the derived XYZ positions on the Galactic system, UVW components of the space velocities, visual extinction, and bolometric luminosity.
- ID:
- ivo://CDS.VizieR/J/A+A/555/A91
- Title:
- Kinematics of bulge red clump stars
- Short Name:
- J/A+A/555/A91
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Galactic bulge is X-shaped, caused by the two southern arms of the X both crossing the lines of sight, producing a double red clump (one bright and one faint) in the color magnitude diagram. In this paper the authors measure the radial velocities and proper motions for a sample of 454 individual bulge giant stars, roughly equally distributed between the two red clumps to determine how such a structure could be formed from bar instabilities. The radial velocity distribution of stars in the bright red clump, which traces the closer overdensity of bulge stars, shows an excess of stars moving towards the Sun. Similarly, an excess of stars receding from the Sun is seen in the more distant overdensity, which is traced by faint red clump stars. This can be explained by the presence of stars on elongated orbits, which are most likely streaming along the arms of the X-shaped bulge. Proper motions for these stars are consistent with qualitative predictions of dynamical models of peanut-shaped bulges. Surprisingly, stars on elongated orbits have preferentially metal-poor (subsolar) metallicities, while the metal rich ones, in both overdensities, are preferentially found in more axisymmetric orbits.
- ID:
- ivo://CDS.VizieR/J/AJ/108/1016
- Title:
- Kinematics of local RR lyrae stars. I.
- Short Name:
- J/AJ/108/1016
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In order to study the structure and formation history of the galaxy, we have obtained low-to-moderate dispersion spectra of 302 nearby RR Lyrae variables of Bailey type "ab". We derived abundances, typically accurate to 0.15-0.20dex and calibrated to the Zinn & West (1984ApJS...55...45Z) globular cluster metallicity scale, from the pseudo-equivalent widths of the Ca II K, Hdelta, Hgamma, and Hbeta lines. Radial velocities accurate to between 2 and 30km/s were obtained from the spectra and from the literature. Distances accurate to between 5% and 20% were derived from published apparent magnitudes and Burstein & Heiles (1982AJ.....87.1165B) reddenings. The metallicity distribution of the RR Lyrae stars peaks at [Fe/H]_K_ =~ -1.5, and is narrower than that of the Ryan & Norris (1991AJ....101.1865R) subdwarfs, as expected since the most metal-rich and metal-poor progenitors preferentially appear as stable red and blue horizontal branch stars, rather than as RR Lyrae. The metal-rich tail of the RR Lyrae distribution extends to [Fe/H]_K_{approx}0, and a qualitative analysis of the distribution of distances from the galactic plane shows that the stars in this tail (i.e., [Fe/H]_K_>-1.0) are more concentrated to the plane than the more metal-poor stars. The abundance distribution of the local RR Lyrae stars is in excellent agreement with the changing abundance distributions of distant RR Lyrae stars as a function of galactocentric distance, as derived by Suntzeff et al. (1991ApJ...367..528S), who ascribed this change to systematic variations in horizontal branch morphology (probably age variations) with galactocentric distance. The abundance distribution of the local RR Lyrae stars also agrees well with those of the distant RR Lyrae stars as a function of distance from the galactic plane. There is no evidence for an abundance gradient in this direction, suggesting that gaseous dissipation did not play a major role in the formation of the outer halo.