Studies of distant galaxies have shown that ellipticals and large spirals (Schade et al., 1999ApJ...525...31S; Lilly et al., 1998ApJ...500...75L) were already in place 8Gyr ago, leading to a very modest recent star formation (Brinchmann & Ellis, 2000ApJ...536L..77B) in intermediate mass galaxies (3-30*10^10^M_{sun}_). This is challenged by a recent analysis (Heavens et al., 2004Natur.428..625H) of the fossil record of the stellar populations of ~105 nearby galaxies, which shows that intermediate mass galaxies formed or assembled the bulk of their stars 4 to 8Gyr ago. Here we present direct observational evidence supporting this findings from a long term, multi-wavelength study of 195 z>0.4 intermediate mass galaxies, mostly selected from the Canada France Redshift Survey (CFRS, Cat. <VII/225>).
We present the mid-infrared star formation rates of 245 X-ray selected, nearby (z<0.1) brightest cluster galaxies (BCGs). A homogeneous and volume limited sample of BCGs was created by X-ray selecting clusters with Lx>1x10^44^erg/s. The Wide-Field Infrared Survey Explorer (WISE) All WISE Data Release provides the first measurement of the 12{mu}m star formation indicator for all BCGs in the nearby Universe. Perseus A and Cygnus A are the only galaxies in our sample to have star formation rates of >40M_{sun}_/yr, indicating that these two galaxies are highly unusual at current times. Stellar populations of 99+/-0.6 per cent of local BCGs are (approximately) passively evolving, with star formation rates of <10M_{sun}_/yr. We find that in general, star formation produces only modest BCG growth at the current epoch.
We study a sample of 28 S0 galaxies extracted from the integral field spectroscopic (IFS) survey Calar Alto Legacy Integral Field Area. We combine an accurate two-dimensional (2D) multicomponent photometric decomposition with the IFS kinematic properties of their bulges to understand their formation scenario. Our final sample is representative of S0s with high stellar masses (M*/M_{sun}_>10^10^). They lay mainly on the red sequence and live in relatively isolated environments similar to that of the field and loose groups. We use our 2D photometric decomposition to define the size and photometric properties of the bulges, as well as their location within the galaxies. We perform mock spectroscopic simulations mimicking our observed galaxies to quantify the impact of the underlying disc on our bulge kinematic measurements ({nu} and v/{lambda}). We compare our bulge corrected kinematic measurements with the results from Schwarzschild dynamical modelling. The good agreement confirms the robustness of our results and allows us to use bulge deprojected values of {lambda} and v/{sigma}. We find that the photometric (n and B/T) and kinematic (v/{sigma} and {lambda}) properties of our field S0 bulges are not correlated. We demonstrate that this morpho-kinematic decoupling is intrinsic to the bulges and it is not due to projection effects. We conclude that photometric diagnostics to separate different types of bulges (disc-like versus classical) might not be useful for S0 galaxies. The morpho-kinematics properties of S0 bulges derived in this paper suggest that they are mainly formed by dissipational processes happening at high redshift, but dedicated high-resolution simulations are necessary to better identify their origin.
Models of galaxy formation in a cosmological framework require observational constraints to be tested against, such as the average stellar density profiles (and their dispersion) as a function of fundamental galaxy properties (e.g. the total stellar mass). Simulation models predict that the torques produced by stellar bars efficiently redistribute the stellar and gaseous material inside the disk, pushing it outwards or inwards depending on whether it is beyond or inside the bar corotation resonance radius, respectively. Bars themselves are expected to evolve, getting longer and narrower as they trap particles from the disk and slow down their rotation speed. We use 3.6um photometry from the Spitzer Survey of Stellar Structure in Galaxies (S4G) to trace the stellar distribution in nearby disk galaxies (z~~0) with total stellar masses 10^8.5^<=M*/M_{sun}_<=10^11^ and mid IR Hubble types -3<=T<=10. We characterize the stellar density profiles ({SIGMA}*), the stellar contribution to the rotation curves (V3.6um) and the m=2 Fourier amplitudes (A2) as a function of M* and T. We also describe the typical shapes and strengths of stellar bars in the S4G sample and link their properties to the total stellar mass and morphology of their host galaxy. For 1154 S4G galaxies with disk inclinations lower than 65{deg}, we perform a Fourier decomposition and rescale their images to a common frame determined by the size in physical units, by their disk scalelength, and for 748 barred galaxies by both the length and orientation of their bars. We stack the resized density profiles and images to obtain statistically representative average stellar disks and bars in bins of M* and T. Based on the radial force profiles of individual galaxies we calculate the mean stellar contribution to the circular velocity. We also calculate average A2 profiles, where the radius is normalized to R25.5. Furthermore, we infer the gravitational potentials from the synthetic bars to obtain the tangential-to-radial force ratio (QT) and A2 profiles in the different bins. We also apply ellipse fitting to quantitatively characterize the shape of the bar stacks. For M*>=10^9^M_{sun}_, we find a significant difference in the stellar density profiles of barred and non-barred systems: (i) disks in barred galaxies show larger scalelengths (hR) and fainter extrapolated central surface brightnesses ({SIGMA}0), (ii) the mean surface brightness profiles ({SIGMA}*) of barred and non-barred galaxies intersect each other slightly beyond the mean bar length, most likely at the bar corotation, and (iii) the central mass concentration of barred galaxies is larger (by almost a factor 2 when T<=5) than in their non-barred counterparts. The averaged {SIGMA}* profiles follow an exponential slope down to at least ~10M_{sun}_/pc^2^, which is the typical depth beyond which the sample coverage in the radial direction starts to drop. Central mass concentrations in massive systems (>=10^10^M_{sun}_) are substantially larger than in fainter galaxies, and their prominence scales with T. This segregation also manifests in the inner slope of the mean stellar component of the circular velocity: lenticular (S0) galaxies present the most sharply rising V3.6um . Based on the analysis of bar stacks, we show that early- and intermediate-type spirals (0<=T<5) have intrinsically narrower bars compared to later types and S0s, whose bars are oval-shaped. We show a clear agreement between galaxy family and quantitative estimates of bar strength. In early- and intermediate-type spirals, A2 is larger within and beyond the typical bar region among barred galaxies, compared to the non-barred subsample. Strongly barred systems also tend to have larger A2 amplitudes at all radii than their weakly barred counterparts. Using near-IR wavelengths (S4G 3.6um), we provide observational constraints for galaxy formation models to be checked against. In particular, we calculate the mean stellar density profiles, and the disk(+bulge) component of the rotation curve (and their dispersion) in bins of M* and T. We find evidence for bar-induced secular evolution of disk galaxies, in terms of disk spreading and enhanced central mass concentration. We also obtain average bars (2-D), and we show that bars hosted by early-type galaxies are more centrally concentrated and have larger density amplitudes than their late-type counterparts.
We use the Hubble Space Telescope to obtain WFC3/F390W imaging of the supergroup SG1120-1202 at z=0.37, mapping the UV emission of 138 spectroscopically confirmed members. We measure total (F390W-F814W) colors and visually classify the UV morphology of individual galaxies as "clumpy" or "smooth." Approximately 30% of the members have pockets of UV emission (clumpy) and we identify for the first time in the group environment galaxies with UV morphologies similar to the "jellyfish" galaxies observed in massive clusters. We stack the clumpy UV members and measure a shallow internal color gradient, which indicates that unobscured star formation is occurring throughout these galaxies. We also stack the four galaxy groups and measure a strong trend of decreasing UV emission with decreasing projected group distance (R_proj_). We find that the strong correlation between decreasing UV emission and increasing stellar mass can fully account for the observed trend in (F390W-F814W)-R_proj_, i.e., mass-quenching is the dominant mechanism for extinguishing UV emission in group galaxies. Our extensive multi-wavelength analysis of SG1120-1202 indicates that stellar mass is the primary predictor of UV emission, but that the increasing fraction of massive (red/smooth) galaxies at R_proj_<~2R_200_ and existence of jellyfish candidates is due to the group environment.
Dust formation in supernova ejecta is currently the leading candidate to explain the large quantities of dust observed in the distant, early universe. However, it is unclear whether the ejecta-formed dust can survive the hot interior of the supernova remnant (SNR). We present infrared observations of ~0.02 solar masses of warm (~100 kelvin) dust seen near the center of the ~10,000-year-old Sagittarius A East SNR at the Galactic center. Our findings indicate the detection of dust within an older SNR that is expanding into a relatively dense surrounding medium (electron density ~10^3^ centimeters^-3^) and has survived the passage of the reverse shock. The results suggest that supernovae may be the dominant dust-production mechanism in the dense environment of galaxies of the early universe.
We present spectra of 1142 colour-selected stars in the direction of the Sagittarius Dwarf Spheroidal (Sgr dSph) galaxy, of which 1058 were taken with VLT/FLAMES multi-object spectrograph and 84 were taken with the SAAO Radcliffe 1.9-m telescope grating spectrograph. Spectroscopic membership is confirmed (at >99 per cent confidence) for 592 stars on the basis of their radial velocity, and spectral types are given. Very slow rotation is marginally detected around the galaxy's major axis. We identify five S stars and 23 carbon stars, of which all but four carbon stars are newly determined and all but one (PQ Sgr) are likely Sgr dSph members. We examine the onset of carbon richness in this metal-poor galaxy in the context of stellar models. We compare the stellar death rate (one star per 1000-1700yr) with the known planetary nebula dynamical ages and find that the bulk population produce the observed (carbon-rich) planetary nebulae. We compute average lifetimes of S and carbon stars as 60-250 and 130-500kyr, compared to a total thermal-pulsing asymptotic giant branch lifetime of 530-1330kyr. We conclude by discussing the return of carbon-rich material to the interstellar medium.
The Sagittarius dwarf Spheroidal Galaxy (Sgr dSph) provides us with a unique possibility of studying a dwarf galaxy merging event while still in progress. Moving along a short-period, quasi-polar orbit in the Milky Way Halo, Sgr dSph is being tidally dispersed along a huge stellar stream. Due to its low distance (25kpc), the main body of Sgr dSph covers a vast area in the sky (roughly 15x7degrees). Available photometric and spectroscopic studies have concentrated either on the central part of the galaxy or on the stellar stream, but the overwhelming majority of the galaxy body has never been probed. The aim of the present study is twofold. On the one hand, to produce color magnitude diagrams across the extension of Sgr dSph to study its stellar populations, searching for age and/or composition gradients (or lack thereof). On the other hand, to derive spectroscopic low-resolution radial velocities for a subsample of stars to determine membership to Sgr dSph for the purpose of high resolution spectroscopic follow-up.
The largest survey of compact galaxy groups was published by Shakhbazian et al. (see cat. <VII/89>). This catalogue provides accurate positions of individual galaxies in the groups; photometrical properties of the Southern sky (delta not greater than +2{deg}30') are evaluated on the basis of the COSMOS/UKST catalog of the Southern sky. The catalogue contains 373 groups; this number differs from the number in Shakhbazian's list (377 groups) by the following: => No data for groups 001 (there were already published data by other authors), 206 (could not be re-identified) 241 (could not be re-identified) 252 (is identical with 214), 301 (could not be re-identified) 353 (could not be re-identified) => Group 328 was published twice (in North and South) => Group 340 was divided in two parts (340 and 340a), according to Bettoni and Fasano ([BF95]=1995AJ....109...32B)
The controversy about the origin of the structure of early-type S0-E/S0 galaxies may be due to the difficulty of comparing surface brightness profiles with different depths, photometric corrections and point spread function (PSF) effects (which are almost always ignored). We aim to quantify the properties of Type-III (anti-truncated) discs in a sample of S0 galaxies at 0.2<z<0.6. In this paper, we present the sample selection and describe in detail the methods to robustly trace the structure in their outskirts and correct for PSF effects. We have selected and classified a sample of 150 quiescent galaxies at 0.2<z<0.6 in the GOODS-N field. We performed a quantitative structural analysis of 44 S0-E/S0 galaxies. We have corrected their surface brightness profiles for PSF distortions and analysed the biases in the structural and photometric parameters when the PSF correction is not applied. Additionally, we have developed Elbow, an automatic statistical method to determine whether a possible break is significant - or not - and its type. We have made this method publicly available. We find 14 anti-truncated S0-E/S0 galaxies in the range 0.2<z<0.6 (~30% of the final sample). This fraction is similar to the those reported in the local Universe. In our sample, ~25% of the Type-III breaks observed in PSF-uncorrected profiles are artifacts, and their profiles turn into a Type I after PSF correction. PSF effects also soften Type-II profiles. We find that the profiles of Type-I S0 and E/S0 galaxies of our sample are compatible with the inner profiles of the Type-III, in contrast with the outer profiles. We have obtained the first robust and reliable sample of 14 anti-truncated S0-E/S0 galaxies beyond the local Universe, in the range 0.2<z<0.6. PSF effects significantly affect the shape of the surface brightness profiles in galaxy discs even in the case of the narrow PSF of HST/ACS images, so future studies on the subject should make an effort to correct them.