- ID:
- ivo://CDS.VizieR/J/MNRAS/412/423
- Title:
- Stellar population trends in S0 galaxies
- Short Name:
- J/MNRAS/412/423
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present stellar population age and metallicity trends for a sample of 59 S0 galaxies based on optical Sloan Digital Sky Survey (SDSS) and near-infrared (NIR) J and H photometry. When combined with optical g and r passband imaging data from the SDSS archive and stellar population models, we obtain radial age and metallicity trends out to at least five effective radii for most of the galaxies in our sample. The sample covers a range in stellar mass and light concentration.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/157/109
- Title:
- Stellar proper motions in the Orion Nebula Cluster
- Short Name:
- J/AJ/157/109
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Orion Nebula Cluster (ONC) is the nearest site of ongoing massive star formation, which allows us to study the kinematics and dynamics of the region in detail and constrain star formation theories. Using HST ACS/WFPC2/WFC3IR and Keck II NIRC2 data, we have measured the proper motions of 701 stars within an ~6'x6' field of view around the center of the ONC. We have found more than 10 escaping star candidates, concentrated predominantly at the core of the cluster. The proper motions of the bound stars are consistent with a normal distribution, albeit elongated north-south along the Orion filament, with proper-motion dispersions of ({sigma}_{mu},{alpha}_*, {sigma}_{mu},{delta}_)=(0.83+/-0.02, 1.12+/-0.03) mas/yr or intrinsic velocity dispersions of ({sigma}_v,{alpha}_*, {sigma}_v,{delta}_)=(1.57+/-0.04, 2.12+/-0.06) km/s assuming a distance of 400 pc to the ONC. The cluster shows no evidence for tangential-to-radial anisotropy. Our velocity dispersion profile agrees with the prediction from the observed stellar + gas density profile from Da Rio et al. (2014ApJ...795...55D, 2017ApJ...845..105D), indicating that the ONC is in virial equilibrium. This finding suggests that the cluster was formed with a low star formation efficiency per dynamical timescale based on comparisons with current star formation theories. Our survey also recovered high-velocity IR sources BN, x and n in the BN/KL region. The estimated location of the first two sources ~500 yr ago agrees with that of the radio source I, consistent with their proposed common origin from a multistellar disintegration. However, source n appears to have a small proper motion and is unlikely to have been involved in the event.
- ID:
- ivo://CDS.VizieR/J/A+A/620/A180
- Title:
- Stellar properties of M dwarfs
- Short Name:
- J/A+A/620/A180
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Being the most numerous and oldest stars in the galaxy, M dwarfs are objects of great interest for exoplanet searches. The presence of molecules in their atmosphere complicates our understanding of their atmospheric properties. But great advances have recently been made in the modeling of M dwarfs due to the revision of solar abundances. We aim to determine stellar parameters of M dwarfs using high resolution spectra (R~90000) simultaneously in the visible and the near-infrared. The high resolution spectra and broad wavelength coverage provide an unique opportunity to understand the onset of dust and cloud formation at cool temperatures. Furthermore, this study will help in understanding the physical processes which occur in a cool atmospheres, particularly, the redistribution of energy from the optical to the near-infrared. The stellar parameters of M dwarfs in our sample have been determined by comparing the high resolution spectra both in the optical and in the near-infrared simultaneously observed by CARMENES with the synthetic spectra obtained from the BT-Settl model atmosphere. The detailed spectral synthesis of these observed spectra both in the optical and in the near-infrared helps to understand the missing continuum opacity. For the first time, we derive fundamental stellar parameters of M dwarfs using the high resolution optical and near-infrared spectra simultaneously. We determine Teff, logg and [M/H] for 292 M dwarfs of spectral type M0 to M9, where the formation of dust and clouds are important. The derived Teff for the sample ranges from 2300 to 4000K, values of log g ranges from 4.5<=logg<=5.5 and the resulting metallicity ranges from -0.5<=[M/H]<=+0.5. We have also explored the possible differences in Teff, logg and [M/H] by comparing them with other studies of the same sample of M dwarfs.
- ID:
- ivo://CDS.VizieR/J/ApJ/733/L9
- Title:
- Stellar rotation for 71 NGC 6811 members
- Short Name:
- J/ApJ/733/L9
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present rotation periods for 71 single dwarf members of the open cluster NGC 6811 determined using photometry from NASA's Kepler mission. The results are the first from The Kepler Cluster Study, which combines Kepler's photometry with ground-based spectroscopy for cluster membership and binarity. The rotation periods delineate a tight sequence in the NGC 6811 color-period diagram from ~1 day at mid-F to ~11 days at early-K spectral type. This result extends to 1Gyr similar prior results in the ~600Myr Hyades and Praesepe clusters, suggesting that rotation periods for cool dwarf stars delineate a well-defined surface in the three-dimensional space of color (mass), rotation, and age. It implies that reliable ages can be derived for field dwarf stars with measured colors and rotation periods, and it promises to enable further understanding of various aspects of stellar rotation and activity for cool stars.
- ID:
- ivo://CDS.VizieR/J/A+A/560/A13
- Title:
- Stellar rotation in h Per
- Short Name:
- J/A+A/560/A13
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We aim at constraining the angular momentum evolution of low mass stars by measuring their rotation rates when they begin to evolve freely towards the ZAMS, i.e. after the disk accretion phase has stopped. We conducted a multi-site photometric monitoring of the young open cluster h Persei that has an age of ~13Myr. The observations were done in the I-band using 4 different telescopes and the variability study is sensitive to periods from less than 0.2 day to 20-days. Rotation periods are derived for 586 candidate cluster members over the mass range 0.4<=M/M_{sun}_<=1.4. The rotation period distribution indicates a slightly higher fraction of fast rotators for the lower mass objects, although the lower and upper envelopes of the rotation period distribution, located respectively at ~0.2-0.3d and ~10d, are remarkably flat over the whole mass range. We combine this period distribution with previous results obtained in younger and older clusters to model the angular momentum evolution of low mass stars during the PMS. The h Per cluster provides the first statistically robust estimate of the rotational period distribution of solar-type and lower mass stars at the end of the PMS accretion phase (>=10Myr). The results are consistent with models that assume significant core-envelope decoupling during the angular momentum evolution to the ZAMS.
- ID:
- ivo://CDS.VizieR/J/MNRAS/413/2218
- Title:
- Stellar rotation in Hyades and Praesepe
- Short Name:
- J/MNRAS/413/2218
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of photometric surveys for stellar rotation in the Hyades and in Praesepe, using data obtained as part of the SuperWASP exoplanetary transit-search programme. We determined accurate rotation periods for more than 120 sources whose cluster membership was confirmed by common proper motion and colour-magnitude fits to the clusters' isochrones. This allowed us to determine the effect of magnetic braking on a wide range of spectral types for expected ages of ~600Myr for the Hyades and Praesepe. Both clusters show a tight and nearly linear relation between J-Ks colour and rotation period in the F, G and K spectral range. This confirms that loss of angular momentum was significant enough that stars with strongly different initial rotation rates have converged to the same rotation period for a given mass, by the ages of Hyades and Praesepe.
6407. Stellar rotation in M35
- ID:
- ivo://CDS.VizieR/J/ApJ/695/679
- Title:
- Stellar rotation in M35
- Short Name:
- J/ApJ/695/679
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a five month photometric time-series survey for stellar rotation over a 40'x40' field centered on the 150Myr open cluster M35 (=NGC 2168). We report rotation periods for 441 stars within this field and determine their cluster membership and binarity based on a decade-long radial velocity survey, proper-motion measurements, and multiband photometric observations. We find that 310 of the stars with measured rotation periods are late-type members of M35. The distribution of rotation periods for cluster members span more than 2 orders of magnitude from ~0.1 to 15 days, not constrained by the sampling frequency and the timespan of the survey. With an age between the zero-age main sequence and the Hyades, and with ~6 times more rotation periods than measured in the Pleiades, M35 permit detailed studies of early rotational evolution of late-type stars. Nearly 80% of the 310 rotators lie on two distinct sequences in the color-period plane, and define clear relations between stellar rotation period and color (mass). The M35 color-period diagram enables us to determine timescales for the transition between the two rotational states, of ~60Myr and ~140Myr for G and K dwarfs, respectively.
- ID:
- ivo://CDS.VizieR/J/AJ/134/2398
- Title:
- Stellar SEDs in SDSS and 2MASS filters
- Short Name:
- J/AJ/134/2398
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Sloan Digital Sky Survey (SDSS) and Two Micron All Sky Survey (2MASS) are rich resources for studying stellar astrophysics and the structure and formation history of the Galaxy. As new surveys and instruments adopt similar filter sets, it is increasingly important to understand the properties of the ugrizJHKs stellar locus, both to inform studies of "normal" main-sequence stars and enable robust searches for point sources with unusual colors. Using a sample of ~600000 point sources detected by SDSS and 2MASS, we tabulate the position and width of the ugrizJHKs stellar locus as a function of g-i color, and provide accurate polynomial fits. We map the Morgan-Keenan spectral type sequence to the median stellar locus by using synthetic photometry of spectral standards and by analyzing 3000 SDSS stellar spectra with a custom spectral typing pipeline, described in the Appendix to this paper. We develop an algorithm to calculate a point source's minimum separation from the stellar locus in a seven-dimensional color space, and use it to robustly identify objects with unusual colors, as well as spurious SDSS/2MASS matches.
- ID:
- ivo://CDS.VizieR/J/MNRAS/390/1437
- Title:
- Stellar streams in Andromeda (M31)
- Short Name:
- J/MNRAS/390/1437
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a spectroscopic analysis of five stellar streams ("A", "B", "Cr", "Cp" and "D") as well as the extended star cluster, EC4, which lies within Stream "C", all discovered in the halo of M31 from our Canada-France-Hawaii Telescope/MegaCam survey. These spectroscopic results were initially serendipitous, making use of our existing observations from the DEep Imaging Multi-Object Spectrograph mounted on the Keck II telescope, and thereby emphasizing the ubiquity of tidal streams that account for ~70 per cent of the M31 halo stars in the targeted fields. Subsequent spectroscopy was then procured in Stream "C" and Stream "D" to trace the velocity gradient along the streams. Nine metal-rich ([Fe/H]~-0.7) stars at v_hel_=-349.5km/s, {sigma}_v,corr_~5.1+/-2.5km/s are proposed as a serendipitous detection of Stream "Cr", with follow-up kinematic identification at a further point along the stream. Seven metal-poor ([Fe/H]~-1.3) stars confined to a narrow, 15km/s velocity bin centred at v_hel_=-285.6, {sigma}_v,corr_=4.3^+1.7^_-1.4_km/s represent a kinematic detection of Stream "Cp", again with follow-up kinematic identification further along the stream. For the cluster EC4, candidate member stars with average [Fe/H]~-1.4, are found at v_hel_=-282 suggesting it could be related to Stream "Cp". No similarly obvious cold kinematic candidate is found for Stream "D", although candidates are proposed in both of two spectroscopic pointings along the stream (both at ~-400km/s). Spectroscopy near the edge of Stream "B" suggests a likely kinematic detection at v_hel_~-330, {sigma}_v,corr_~6.9km/s, while a candidate kinematic detection of Stream "A" is found (plausibly associated to M33 rather than M31) with v_hel_~-170, {sigma}_v,corr_=12.5km/s. The low dispersion of the streams in kinematics, physical thickness and metallicity makes it hard to reconcile with a scenario whereby these stream structures as an ensemble are related to the giant southern stream. We conclude that the M31 stellar halo is largely made up of multiple kinematically cold streams.
- ID:
- ivo://CDS.VizieR/J/A+A/610/A5
- Title:
- Stellar structure models of edge-on galaxies
- Short Name:
- J/A+A/610/A5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Recent studies have made the community aware of the importance of accounting for scattered light when examining low-surface-brightness galaxy features such as thick discs. In our past studies of the thick discs of edge-on galaxies in the Spitzer Survey of Stellar Structure in Galaxies - the S4G - we modelled the point spread function as a Gaussian. In this paper we re- examine our results using a revised point spread function model that accounts for extended wings out to more than 2.5arcmin. We study the 3.6micron images of 141 edge-on galaxies from the S4G and its early-type galaxy extension. Thus, we more than double the samples examined in our past studies. We decompose the surface-brightness profiles of the galaxies perpendicular to their mid-planes assuming that discs are made of two stellar discs in hydrostatic equilibrium. We decompose the axial surface- brightness profiles of galaxies to model the central mass concentration - described by a Sersic function - and the disc - described by a broken exponential disc seen edge-on. Our improved treatment fully confirms the ubiquitous occurrence of thick discs. The main difference between our current fits and those presented in our previous papers is that now the scattered light from the thin disc dominates the surface brightness at levels below ~26mag/arcsec^2^. We stress that those extended thin disc tails are not physical, but pure scattered light. This change, however, does not drastically affect any of our previously presented results: 1) Thick discs are nearly ubiquitous. They are not an artefact caused by scattered light as has been suggested elsewhere. 2) Thick discs have masses comparable to those of thin discs in low-mass galaxies - with circular velocities vc<120km/s - whereas they are typically less massive than the thin discs in high-mass galaxies. 3) Thick discs and central mass concentrations seem to have formed at the same epoch from a common material reservoir. 4) Approximately 50% of the up-bending breaks in face-on galaxies are caused by the superposition of a thin and a thick disc where the scale-length of the latter is the largest.