We present new ground-based, multi-colour, broad-band photometric measurements of the physical parameters, transmission and emission spectra of the transiting extrasolar planet WASP-19b. The measurements are based on observations of eight transits and four occultations through a Gunn i filter using the 1.54-m Danish Telescope, 14 transits through an Rc filter at the Perth Exoplanet Survey Telescope (PEST) observatory and one transit observed simultaneously through four optical (Sloan g', r', i', z') and three near-infrared (J, H, K) filters, using the Gamma Ray Burst Optical and Near-Infrared Detector (GROND) instrument on the MPG/ESO 2.2-m telescope. The GROND optical light curves have a point-to-point scatter around the best-fitting model between 0.52 and 0.65 mmag rms. We use these new data to measure refined physical parameters for the system. We find the planet to be more bloated (R_b_=1.410+/-0.017R_Jup_; M_b_=1.139+/-0.030M_Jup_) and the system to be twice as old as initially thought. We also used published and archived data sets to study the transit timings, which do not depart from a linear ephemeris. We detected an anomaly in the GROND transit light curve which is compatible with a spot on the photosphere of the parent star. The starspot position, size, spot contrast and temperature were established. Using our new and published measurements, we assembled the planet's transmission spectrum over the 370-2350nm wavelength range and its emission spectrum over the 750-8000nm range. By comparing these data to theoretical models we investigated the theoretically predicted variation of the apparent radius of WASP-19b as a function of wavelength and studied the composition and thermal structure of its atmosphere. We conclude that: (i) there is no evidence for strong optical absorbers at low pressure, supporting the common idea that the planet's atmosphere lacks a dayside inversion; (ii) the temperature of the planet is not homogenized, because the high warming of its dayside causes the planet to be more efficient in re-radiating than redistributing energy to the night side; (iii) the planet seems to be outside of any current classification scheme.
Transit time of K2-146b and K2-146c with K2 and HPF
Short Name:
J/AJ/159/120
Date:
21 Oct 2021
Publisher:
CDS
Description:
K2-146 is a cool, 0.358M_{sun}_ dwarf that was found to host a mini-Neptune with a 2.67day period. The planet exhibited strong transit timing variations (TTVs) of greater than 30minutes, indicative of the presence of an additional object in the system. Here we report the discovery of the previously undetected outer planet in the system, K2-146c, using additional photometric data. K2-146c was found to have a grazing transit geometry and a 3.97day period. The outer planet was only significantly detected in the latter K2 campaigns presumably because of precession of its orbital plane. The TTVs of K2-146b and c were measured using observations spanning a baseline of almost 1200days. We found strong anti-correlation in the TTVs, suggesting the two planets are gravitationally interacting. Our TTV and transit model analyses revealed that K2-146b has a radius of 2.25{+/-}0.10R_{earth}_ and a mass of 5.6{+/-}0.7M_{earth}_, whereas K2-146c has a radius of 2.59_-0.39_^+1.81^R_{earth} and a mass of 7.1{+/-}0.9M_{earth}_. The inner and outer planets likely have moderate eccentricities of e=0.14{+/-}0.07 and 0.16{+/-}0.07, respectively. Long-term numerical integrations of the two-planet orbital solution show that it can be dynamically stable for at least 2Myr. We show that the resonance angles of the planet pair are librating, which may be an indication that K2-146b and c are in a 3:2 mean motion resonance. The orbital architecture of the system points to a possible convergent migration origin.
Many of the known hot Jupiters are formally unstable to tidal orbital decay. The only hot Jupiter for which orbital decay has been directly detected is WASP-12, for which transit-timing measurements spanning more than a decade have revealed that the orbital period is decreasing at a rate of dP/dt~10^-9^, corresponding to a reduced tidal quality factor of about 2x10^5^. Here, we present a compilation of transit-timing data for WASP-12 and 11 other systems that are especially favorable for detecting orbital decay: KELT-16; WASP-18, 19, 43, 72, 103, 114, and 122; HAT-P-23; HATS-18; and OGLE-TR-56. For most of these systems we present new data that extend the time baseline over which observations have been performed. None of the systems besides WASP-12 display convincing evidence for period changes, with typical upper limits on dP/dt on the order of 10^-9^ or 10^-10^, and lower limits on the reduced tidal quality factor on the order of 10^5^. One possible exception is WASP-19, which shows a statistically significant trend, although it may be a spurious effect of starspot activity.
The transiting hot Jupiter planet Qatar-1 b was presented to exhibit variations in transit times that could be of perturbative nature. A hot Jupiter with a planetary companion on a nearby orbit would constitute an unprecedented planetary configuration, important for theories of formation and evolution of planetary systems. We performed a photometric follow-up campaign to confirm or refute transit timing variations. We extend the baseline of transit observations by acquiring 18 new transit light curves acquired with 0.6-2.0 m telescopes. These photometric time series, together with data available in the literature, were analyzed in a homogenous way to derive reliable transit parameters and their uncertainties. We show that the dataset of transit times is consistent with a linear ephemeris leaving no hint for any periodic variations with a range of 1 min. We find no compelling evidence for the existence of a close-in planetary companion to Qatar-1 b. This finding is in line with a paradigm that hot Jupiters are not components of compact multi-planetary systems. Based on dynamical simulations, we place tighter constraints on a mass of any fictitious nearby planet in the system. Furthermore, new transit light curves allowed us to redetermine system parameters with the precision better than that reported in previous studies. Our values generally agree with previous determinations.
WASP-43b is one of the most important candidates for detecting an orbital decay. We investigate pieces of evidence for this expectation as variations in its transit timings, based on the ground and space observations. The data set includes the transit observations at the TUBITAK National Observatory of Turkey and Transiting Exoplanet Survey Satellite (TESS). We present a global model of the system, based on the most precise photometry from space, ground, and archival radial velocity data. Using the homogenized data set and modeled light curves, we measure the mid-transit times for WASP-43b. Our analysis agrees with a linear ephemeris for which we refine the light elements for future observations of the system. However, there is a negative difference between the transit timings derived from TESS data in two sectors (9 and 35) and a hint of an orbital period decrease in the entire data set. Both findings are statistically insignificant due to the short baseline of observations, which prevents us from drawing firm conclusions about the orbital decay of this ultra-short-period planet. However, assuming the effect of this decrease of the period in the planet's orbit, we derive a lower limit for the reduced tidal quality factor as Q*'>(4.01{+/-}1.15)x10^5^ from the best-fitting quadratic function. Finally, we calculate a probable rotational period for this system as 7.52days from the out-of-transit flux variation in the TESS light curves due to spot modulation.
K2-146 is a mid-M dwarf (M_*_=0.331+/-0.009 M_{sun}_; R_*_=0.330+/-0.010 R_{sun}_), observed in Campaigns 5, 16, and 18 of the K2 mission. In Campaign 5 data, a single planet was discovered with an orbital period of 2.6 days and large transit timing variations due to an unknown perturber. Here, we analyze data from Campaigns 16 and 18, detecting the transits of a second planet, c, with an orbital period of 4.0 days, librating in a 3:2 resonance with planet b. Large, anticorrelated timing variations of both planets exist due to their resonant perturbations. The planets have a mutual inclination of 2.40{deg}+/-0.25{deg}, which torqued planet c more closely into our line of sight. Planet c was grazing in Campaign 5 and thus missed in previous searches; it is fully transiting in Campaigns 16 and 18, and its transit depth is three times larger. We improve the stellar properties using data from Gaia DR2 (Cat. I/345), and use dynamical fits to find that both planets are sub-Neptunes: their masses are 5.77+/-0.18 and 7.50+/-0.23 M_{Earth}_, and their radii are 2.04+/-0.06 and 2.19+/-0.07 R_{Earth}_, respectively. These mass constraints set the precision record for small exoplanets (a few gas giants have comparable relative precision). These planets lie in the photoevaporation valley when viewed in Radius-Period space, but due to the low-luminosity M-dwarf host star, they lie among the atmosphere-bearing planets when viewed in Radius-Irradiation space. This, along with their densities being 60-80% that of Earth, suggests that they may both have retained a substantial gaseous envelope.
We extract transit timing variation (TTV) signals for 12 pairs of transiting planet candidates that are near first-order mean motion resonances (MMR), using publicly available Kepler light curves (Q0-Q14). These pairs show significant sinusoidal TTVs with theoretically predicted periods, which demonstrate these planet candidates are orbiting and interacting in the same system. Although individual masses cannot be accurately extracted based only on TTVs because of the well-known degeneracy between mass and eccentricity, TTV phases and amplitudes can still place upper limits on the masses of the candidates, confirming their planetary nature. Furthermore, the mass ratios of these planet pairs can be relatively tightly constrained using these TTVs. The planetary pair in KOI 880 seems to have particularly high mass and density ratios, which might indicate very different internal compositions of these two planets. Some of these newly confirmed planets are also near MMR with other candidates in the system, forming unique resonance chains (e.g., KOI 500).
Transit timing variation for 15 planetary pairs. II.
Short Name:
J/ApJS/210/25
Date:
21 Oct 2021
Publisher:
CDS
Description:
Following on from Paper I (Cat. J/ApJS/208/22) in this series, I report the confirmation of a further 30 planets in 15 multiple-planet systems via transit timing variations (TTVs), using the publicly available Kepler light curves (Q0-Q16). All 15 pairs are near first-order mean motion resonances, showing sinusoidal TTVs consistent with theoretically predicted periods, which demonstrate they are orbiting and interacting in the same systems. Although individual masses cannot be accurately extracted based only on TTVs (because of the well known degeneracy between mass and eccentricity), the measured TTV phases and amplitudes can still place relatively tight constraints on their mass ratios and upper limits on their masses, which confirm their planetary nature. Some of these systems (KOI-274, KOI-285, KOI-370, and KOI-2672) are relatively bright and thus suitable for further follow-up observations.
Variations in the timing of transiting exoplanets provide a powerful tool detecting additional planets in the system. Thus, the aim of this paper is to discuss the plausibility of transit timing variations on the Qatar-1 system by means of primary transit light curves analysis. Furthermore, we provide an interpretation of the timing variation. We observed Qatar-1 between March 2011 and October 2012 using the 1.2m OLT telescope in Germany and the 0.6m PTST telescope in Spain. We present 26 primary transits of the hot Jupiter Qatar-1b. In total, our light curves cover a baseline of 18 months. We also refine the ephemeris of Qatar-1b, which we find to be T0=2456157.42204+/-0.0001BJD_TDB_ and P=1.4200246+/-0.0000007 days, and improve the system orbital parameters.
Recent years have seen increasing interest in the characterization of sub-Neptune-sized planets because of their prevalence in the Galaxy, contrasted with their absence in our solar system. HD97658 is one of the brightest stars hosting a planet of this kind, and we present the transmission spectrum of this planet by combining four Hubble Space Telescope transits, 12 Spitzer/IRAC transits, and eight Microvariability and Oscillations of Stars Telescope (MOST) transits of this system. Our transmission spectrum has a higher signal-to-noise ratio than those from previous works, and the result suggests that the slight increase in transit depth from wavelength 1.1-1.7{mu}m reported in previous works on the transmission spectrum of this planet is likely systematic. Nonetheless, our atmospheric modeling results are inconclusive, as no model provides an excellent match to our data. Nonetheless, we find that atmospheres with high C/O ratios (C/O~>0.8) and metallicities of ~>100 solar metallicity are favored. We combine the mid-transit times from all of the new Spitzer and MOST observations and obtain an updated orbital period of P=9.489295{+/-}0.000005, with a best-fit transit time center at T0=2456361.80690{+/-}0.00038(BJD). No transit timing variations are found in this system. We also present new measurements of the stellar rotation period (34{+/-}2days) and stellar activity cycle (9.6yr) of the host star HD97658. Finally, we calculate and rank the Transmission Spectroscopy Metric of all confirmed planets cooler than 1000K and with sizes between 1R_{Earth}_ and 4R_{Earth}_. We find that at least a third of small planets cooler than 1000K can be well characterized using James Webb Space Telescope, and of those, HD97658b is ranked fifth, meaning that it remains a high-priority target for atmospheric characterization.