- ID:
- ivo://CDS.VizieR/J/ApJ/734/43
- Title:
- X-ray, optical and radio monitoring of 3C 111
- Short Name:
- J/ApJ/734/43
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of extensive multi-frequency monitoring of the radio galaxy 3C 111 between 2004 and 2010 at X-ray (2.4-10keV), optical (R band), and radio (14.5, 37, and 230GHz) wave bands, as well as multi-epoch imaging with the Very Long Baseline Array (VLBA) at 43GHz. Over the six years of observation, significant dips in the X-ray light curve are followed by ejections of bright superluminal knots in the VLBA images. This shows a clear connection between the radiative state near the black hole, where the X-rays are produced, and events in the jet. The X-ray continuum flux and Fe line intensity are strongly correlated, with a time lag shorter than 90 days and consistent with zero.
« Previous |
351 - 354 of 354
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/880/29
- Title:
- X-ray polarization predictions in blazars
- Short Name:
- J/ApJ/880/29
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- X-ray polarization should provide new probes of magnetic field geometry and acceleration physics near the base of blazar jets, but near-future missions will have limited sensitivity. We thus use existing lower energy data and X-ray variability measurements in the context of a basic synchro-Compton model to predict the X-ray polarization level and the probability of detection success for individual sources, listing the most attractive candidates for an Imaging X-ray Polarimetry Explorer campaign. We find that, as expected, several high-peak blazars such as Mrk 421 can be easily measured in 100ks exposures. Most low-peak sources should only be accessible to triggered campaigns during bright flares. Surprisingly, a few intermediate peak sources can have anomalously high X-ray polarization and thus are attractive targets.
- ID:
- ivo://CDS.VizieR/J/ApJS/232/7
- Title:
- 8yr R-band photopolarimetric data of blazar Mrk 421
- Short Name:
- J/ApJS/232/7
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The results of 8yr R-band photopolarimetric data of blazar Mrk 421 collected from 2008 February to 2016 May are presented, along with extensive multiwavelength observations covering radio to TeV {gamma}-rays around the flares observed in 2008 May, 2010 March, and 2013 April. The most important results are found in 2013, when the source displayed in the R band a very high brightness state of 11.29+/-0.03mag (93.60+/-1.53mJy) on April 10 and a polarization degree of 11.00%+/-0.44% on May 13. The analysis of the optical data shows that the polarization variability is due to the superposition of two polarized components that might be produced in two distinct emitting regions. An intranight photopolarimetric variability study carried out over seven nights after the 2013 April maximum found flux and polarization variations on the nights of April 14, 15, 16, and 19. In addition, the flux shows a minimum variability timescale of {Delta}t=2.34+/-0.12hr, and the polarization degree presents variations of~1%-2% on a timescale of {Delta}t~minutes. Also, a detailed analysis of the intranight data shows a coherence length of the large-scale magnetic field of l_B_~0.3pc, which is the same order of magnitude as the distance traveled by the relativistic shocks. This result suggests that there is a connection between the intranight polarimetric variations and spatial changes of the magnetic field. Analysis of the complete R-band data along with the historical optical light curve found for this object shows that Mrk 421 varies with a period of 16.26+/-1.78yr.
- ID:
- ivo://CDS.VizieR/J/ApJS/245/18
- Title:
- 9yr R-band photopolarimetric data of 3C 279
- Short Name:
- J/ApJS/245/18
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- An exhaustive analysis of 9yr optical R-band photopolarimetric data of the flat-spectrum radio quasar 3C 279 from 2008 February 27 to 2017 May 25 is presented, along with multiwavelength observing campaigns performed during the flaring activity exhibited in 2009 February/March, 2011 June, 2014 March/April, 2015 June, and 2017 February. In the R band, this source showed the maximum brightness state of 13.68+/-0.11mag (1.36+/-0.20mJy) on 2017 March 2 and the lowest brightness state ever recorded of 18.20+/-0.87 mag (0.16+/-0.03mJy) on 2010 June 17. During the entire period of observations, the polarization degree varied between 0.48%+/-0.17% and 31.65%+/-0.77%, and the electric vector position angle (EVPA) exhibited large rotations between 82.98+/-0.92{deg} and 446.32+/-1.95{deg}. Optical polarization data show that this source has a stable polarized component that varied from~6% (before the 2009 flare) to~13% after the flare. The overall behavior of our polarized variability data supports the scenario of jet precessions as responsible for the observed large rotations of the EVPA. Discrete correlation function analysis shows that the lags between gamma-rays and X-rays compared to the optical R-band fluxes are {Delta}t~31 days and 1 day in 2009. Lags were also found among gamma-rays compared with X-rays and radio of {Delta}t~30 and 43 days in 2011, and among radio and optical R band of {Delta}t~10 days in 2014. A very intense flare in 2017 was observed in optical bands, with a dramatic variation in the polarization degree (from~6% to 20%) in 90 days without exhibiting flaring activity in other wavelengths.