- ID:
- ivo://CDS.VizieR/J/ApJ/742/37
- Title:
- Abundances of six RGB stars in M22
- Short Name:
- J/ApJ/742/37
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an empirical s-process abundance distribution derived with explicit knowledge of the r-process component in the low-metallicity globular cluster M22. We have obtained high-resolution, high signal-to-noise spectra for six red giants in M22 using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory. In each star we derive abundances for 44 species of 40 elements, including 24 elements heavier than zinc (Z=30) produced by neutron-capture reactions. Previous studies determined that three of these stars (the "r+s group") have an enhancement of s-process material relative to the other three stars (the "r-only group"). We confirm that the r+s group is moderately enriched in Pb relative to the r-only group. Both groups of stars were born with the same amount of r-process material, but s-process material was also present in the gas from which the r+s group formed. The s-process abundances are inconsistent with predictions for asymptotic giant branch (AGB) stars with M<=3M_{sun}_ and suggest an origin in more massive AGB stars capable of activating the ^22^Ne({alpha},n)^25^Mg reaction. We calculate the s-process "residual" by subtracting the r-process pattern in the r-only group from the abundances in the r+s group. In contrast to previous r- and s-process decompositions, this approach makes no assumptions about the r- and s-process distributions in the solar system and provides a unique opportunity to explore s-process yields in a metal-poor environment.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/889/27
- Title:
- Abundances of 11 stars in Carina II and III
- Short Name:
- J/ApJ/889/27
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first detailed elemental abundances in the ultra-faint Magellanic satellite galaxies Carina II (Car II) and Carina III (CarIII). With high-resolution Magellan/MIKE spectroscopy, we determined the abundances of nine stars in Car II, including the first abundances of an RR Lyrae star in an ultra-faint dwarf galaxy (UFD), and two stars in Car III. The chemical abundances demonstrate that both systems are clearly galaxies and not globular clusters. The stars in these galaxies mostly display abundance trends matching those of other similarly faint dwarf galaxies: enhanced but declining [{alpha}/Fe] ratios, iron-peak elements matching the stellar halo, and unusually low neutron-capture element abundances. One star displays a low outlying [Sc/Fe]=-1.0. We detect a large Ba scatter in Car II, likely due to inhomogeneous enrichment by low-mass asymptotic giant branch star winds. The most striking abundance trend is for [Mg/Ca] in Car II, which decreases from +0.4 to -0.4 and indicates clear variation in the initial progenitor masses of enriching core-collapse supernovae. So far, the only UFDs displaying a similar [Mg/Ca] trend are likely satellites of the Large Magellanic Cloud. We find two stars with [Fe/H]<=-3.5 whose abundances likely trace the first generation of metal-free Population III stars and are well fit by Population III core-collapse supernova yields. An appendix describes our new abundance uncertainty analysis that propagates line-by-line stellar parameter uncertainties.
- ID:
- ivo://CDS.VizieR/J/ApJ/854/184
- Title:
- Abundances of stars in 3 open clusters
- Short Name:
- J/ApJ/854/184
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Single stars in open clusters with known distances are important targets in constraining the nucleosynthesis process since their ages and luminosities are also known. In this work, we analyze a sample of 29 single red giants of the open clusters NGC2360, NGC3680, and NGC5822 using high-resolution spectroscopy. We obtained atmospheric parameters, abundances of the elements C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd, as well as radial and rotational velocities. We employed the local thermodynamic equilibrium atmospheric models of Kurucz and the spectral analysis code moog. Rotational velocities and light-element abundances were derived using spectral synthesis. Based on our analysis of the single red giants in these three open clusters, we could compare, for the first time, their abundance pattern with that of the binary stars of the same clusters previously studied. Our results show that the abundances of both single and binary stars of the open clusters NGC 2360, NGC 3680, and NGC 5822 do not have significant differences. For the elements created by the s-process, we observed that the open clusters NGC2360, NGC3680, and NGC5822 also follow the trend already raised in the literature that young clusters have higher s-process element abundances than older clusters. Finally, we observed that the three clusters of our sample exhibit a trend in the [Y/Mg]-age relation, which may indicate the ability of the [Y/Mg] ratio to be used as a clock for the giants.
- ID:
- ivo://CDS.VizieR/J/ApJ/830/93
- Title:
- Abundances of the Ret II brightest red giant members
- Short Name:
- J/ApJ/830/93
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present chemical abundances derived from high-resolution Magellan/Magellan Inamori Kyocera Echelle spectra of the nine brightest known red giant members of the ultra-faint dwarf galaxy Reticulum II (Ret II). These stars span the full metallicity range of Ret II (-3.5<[Fe/H]< -2). Seven of the nine stars have extremely high levels of r-process material ([Eu/Fe]~1.7), in contrast to the extremely low neutron-capture element abundances found in every other ultra-faint dwarf galaxy studied to date. The other two stars are the most metal-poor stars in the system ([Fe/H]< -3), and they have neutron-capture element abundance limits similar to those in other ultra-faint dwarf galaxies. We confirm that the relative abundances of Sr, Y, and Zr in these stars are similar to those found in r-process halo stars, but they are ~0.5dex lower than the solar r-process pattern. If the universal r-process pattern extends to those elements, the stars in Ret II display the least contaminated known r-process pattern. The abundances of lighter elements up to the iron peak are otherwise similar to abundances of stars in the halo and in other ultra-faint dwarf galaxies. However, the scatter in abundance ratios is large enough to suggest that inhomogeneous metal mixing is required to explain the chemical evolution of this galaxy. The presence of low amounts of neutron-capture elements in other ultra-faint dwarf galaxies may imply the existence of additional r-process sites besides the source of r-process elements in Ret II. Galaxies like Ret II may be the original birth sites of r-process enhanced stars now found in the halo.
- ID:
- ivo://CDS.VizieR/J/ApJ/855/83
- Title:
- Abundances of very metal-poor stars in Sagittarius
- Short Name:
- J/ApJ/855/83
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Sagittarius (Sgr) is a massive disrupted dwarf spheroidal galaxy in the Milky Way halo that has undergone several stripping events. Previous chemical studies were restricted mainly to a few, metal-rich ([Fe/H]>~-1) stars that suggested a top-light initial mass function (IMF). Here we present the first high-resolution, very metal-poor ([Fe/H]=-1 to -3) sample of 13 giant stars in the main body of Sgr. We derive abundances of 13 elements, namely C, Ca, Co, Fe, Sr, Ba, La, Ce, Nd, Eu, Dy, Pb, and Th, that challenge the interpretation based on previous studies. Our abundances from Sgr mimic those of the metal-poor halo, and our most metal-poor star ([Fe/H]~-3) indicates a pure r-process pollution. Abundances of Sr, Pb, and Th are presented for the first time in Sgr, allowing for age determination using nuclear cosmochronology. We calculate ages of 9+/-2.5Gyr. Most of the sample stars have been enriched by a range of asymptotic giant branch (AGB) stars with masses between 1.3 and 5M_{sun}_. SgrJ190651.47-320147.23 shows a large overabundance of Pb (2.05dex) and a peculiar abundance pattern best fit by a 3M_{sun}_ AGB star. Based on star-to-star scatter and observed abundance patterns, a mixture of low- and high-mass AGB stars and supernovae (15-25M_{sun}_) is necessary to explain these patterns. The high level (0.29+/-0.05dex) of Ca indicates that massive supernovae must have existed and polluted the early ISM of Sgr before it lost its gas. This result is in contrast with a top-light IMF with no massive stars polluting Sgr.
- ID:
- ivo://CDS.VizieR/J/ApJ/723/1632
- Title:
- Abundance spreads in Bootes I and Segue 1
- Short Name:
- J/ApJ/723/1632
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an AAOmega spectroscopic study of red giants in the ultra-faint dwarf galaxy Bootes I (M_V_~-6) and the Segue 1 system (M_V_~-1.5), either an extremely low luminosity dwarf galaxy or an unusually extended globular cluster. Both Bootes I and Segue 1 have significant abundance dispersions in iron and carbon. Bootes I has a mean abundance of [Fe/H]=-2.55+/-0.11 with an [Fe/H] dispersion of {sigma}=0.37+/-0.08, and abundance spreads of {Delta}[Fe/H]=1.7 and {Delta}[C/H]=1.5. Segue 1 has a mean of [Fe/H]=-2.7+/-0.4 with [Fe/H] dispersion of {sigma}=0.7+/-0.3, and abundances spreads of {Delta}[Fe/H]=1.6 and {Delta}[C/H]=1.2. Moreover, Segue 1 has a radial-velocity member at four half-light radii that is extremely metal-poor and carbon-rich, with [Fe/H]=-3.5, and [C/Fe]=+2.3. Modulo an unlikely non-member contamination, the [Fe/H] abundance dispersion confirms Segue 1 as the least-luminous ultra-faint dwarf galaxy known.
- ID:
- ivo://CDS.VizieR/J/A+A/538/A100
- Title:
- Abundances red giants in Carina dSph
- Short Name:
- J/A+A/538/A100
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The ages of individual Red Giant Branch stars can range from 1Gyr old to the age of the Universe, and it is believed that the abundances of most chemical elements in their photospheres remain unchanged with time (those that are not affected by the first dredge-up). This means that they trace the interstellar medium in the galaxy at the time the star formed, and hence the chemical enrichment history of the galaxy. Colour-Magnitude Diagram analysis has shown the Carina dwarf spheroidal to have had an unusually episodic star formation history and this is expected to be reflected in the abundances of different chemical elements.
- ID:
- ivo://CDS.VizieR/J/ApJ/836/168
- Title:
- Abundances & RVs for stars near (or in) NGC6273
- Short Name:
- J/ApJ/836/168
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Recent observations have shown that a growing number of the most massive Galactic globular clusters contain multiple populations of stars with different [Fe/H] and neutron-capture element abundances. NGC 6273 has only recently been recognized as a member of this "iron-complex" cluster class, and we provide here a chemical and kinematic analysis of >300 red giant branch and asymptotic giant branch member stars using high-resolution spectra obtained with the Magellan-M2FS and VLT-FLAMES instruments. Multiple lines of evidence indicate that NGC 6273 possesses an intrinsic metallicity spread that ranges from about [Fe/H]=-2 to -1 dex, and may include at least three populations with different [Fe/H] values. The three populations identified here contain separate first (Na/Al-poor) and second (Na/Al-rich) generation stars, but a Mg-Al anti-correlation may only be present in stars with [Fe/H]>~-1.65. The strong correlation between [La/Eu] and [Fe/H] suggests that the s-process must have dominated the heavy element enrichment at higher metallicities. A small group of stars with low [{alpha}/Fe] is identified and may have been accreted from a former surrounding field star population. The cluster's large abundance variations are coupled with a complex, extended, and multimodal blue horizontal branch (HB). The HB morphology and chemical abundances suggest that NGC 6273 may have an origin that is similar to {omega} Cen and M54.
- ID:
- ivo://CDS.VizieR/J/ApJ/848/68
- Title:
- Abundances & RVs of stable and Blazhko RRc stars
- Short Name:
- J/ApJ/848/68
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We analyzed series of spectra obtained for 12 stable RRc stars observed with the echelle spectrograph of the du Pont telescope at Las Campanas Observatory and we analyzed the spectra of RRc Blazhko stars discussed by Govea+ (2014, J/ApJ/782/59). We derived model atmosphere parameters, [Fe/H] metallicities, and [X/Fe] abundance ratios for 12 species of 9 elements. We co-added all spectra obtained during the pulsation cycles to increase signal to noise and demonstrate that these spectra give results superior to those obtained by co-addition in small phase intervals. The RRc abundances are in good agreement with those derived for the RRab stars of Chadid+ (2017ApJ...835..187C). We used radial velocity (RV) measurements of metal lines and H{alpha} to construct variations of velocity with phase, and center-of-mass velocities. We used these to construct RV templates for use in low- to medium-resolution RV surveys of RRc stars. Additionally, we calculated primary accelerations, radius variations, and metal and H{alpha} velocity amplitudes, which we display as regressions against primary acceleration. We employ these results to compare the atmosphere structures of metal-poor RRc stars with their RRab counterparts. Finally, we use the RV data for our Blazhko stars and the Blazhko periods of Szczygiel & Fabrycky (2007, J/MNRAS/377/1263) to falsify the Blazhko oblique rotator hypothesis.
- ID:
- ivo://CDS.VizieR/J/AJ/154/155
- Title:
- Abundance variations in the outer halo GC NGC 6229
- Short Name:
- J/AJ/154/155
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- NGC 6229 is a relatively massive outer halo globular cluster that is primarily known for exhibiting a peculiar bimodal horizontal branch morphology. Given the paucity of spectroscopic data on this cluster, we present a detailed chemical composition analysis of 11 red giant branch members based on high resolution (R~38000), high S/N (>100) spectra obtained with the MMT-Hectochelle instrument. We find the cluster to have a mean heliocentric radial velocity of -138.1_-1.0_^+1.0^ km/s, a small dispersion of 3.8_-0.7_^+1.0^ km/s, and a relatively low (M/L_V_)_{sun}_=0.82_-0.28_^+0.49^. The cluster is moderately metal-poor with <[Fe/H]>=-1.13 dex and a modest dispersion of 0.06 dex. However, 18% (2/11) of the stars in our sample have strongly enhanced [La,Nd/Fe] ratios that are correlated with a small (~0.05 dex) increase in [Fe/H]. NGC 6229 shares several chemical signatures with M75, NGC 1851, and the intermediate metallicity populations of {omega} Cen, which lead us to conclude that NGC 6229 is a lower mass iron-complex cluster. The light elements exhibit the classical (anti-)correlations that extend up to Si, but the cluster possesses a large gap in the O-Na plane that separates first and second generation stars. NGC 6229 also has unusually low [Na,Al/Fe] abundances that are consistent with an accretion origin. A comparison with M54 and other Sagittarius clusters suggests that NGC 6229 could also be the remnant core of a former dwarf spheroidal galaxy.