- ID:
- ivo://CDS.VizieR/J/A+A/579/A113
- Title:
- BR light curves of GJ1214b
- Short Name:
- J/A+A/579/A113
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The atmospheric composition and vertical structure of the super-Earth GJ 1214b has been a subject of debate since its discovery in 2009. Recent studies have indicated that high-altitude clouds might mask the lower layers. However, some data points that were gathered at different times and facilities do not fit this picture, probably because of a combination of stellar activity and systematic errors. We observed two transits of GJ 1214b with the Large Binocular Camera, the dual-channel camera at the Large Binocular Telescope. For the first time, we simultaneously measured the relative planetary radius k=R_p_/R_*_ at blue and red optical wavelengths (B+R), thus constraining the Rayleigh scattering on GJ 1214b after correcting for stellar activity effects. To the same purpose, a long-term photometric follow-up of the host star was carried out with WiFSIP at STELLA, revealing a rotational period that is significantly longer than previously reported. Our new unbiased estimates of k yield a flat transmission spectrum extending to shorter wavelengths, thus confirming the cloudy atmosphere scenario for GJ 1214b.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/153/149
- Title:
- Broadband photometry of Neptune from K2
- Short Name:
- J/AJ/153/149
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report here on our search for excess power in photometry of Neptune collected by the K2 mission that may be due to intrinsic global oscillations of the planet Neptune. To conduct this search, we developed new methods to correct for instrumental effects such as intrapixel variability and gain variations. We then extracted and analyzed the time-series photometry of Neptune from 49 days of nearly continuous broadband photometry of the planet. We find no evidence of global oscillations and place an upper limit of ~5ppm at 1000{mu}Hz for the detection of a coherent signal. With an observed cadence of 1 minute and a point-to-point scatter of less than 0.01%, the photometric signal is dominated by reflected light from the Sun, which is in turn modulated by atmospheric variability of Neptune at the 2% level. A change in flux is also observed due to the increasing distance between Neptune and the K2 spacecraft and the solar variability with convection-driven solar p modes present.
- ID:
- ivo://CDS.VizieR/J/ApJ/650/1160
- Title:
- BVRIr photometry of HD 189733
- Short Name:
- J/ApJ/650/1160
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on the BVRI multiband follow-up photometry of the transiting extrasolar planet HD 189733b. We revise the transit parameters and find a planetary radius of Rp=1.154+/-0.033R_J_ and an inclination of i_P_=89.79+/-0.24{deg}. The new density (~1g/cm^3^) is significantly higher than the former estimate (~0.75g/cm^3^); this shows that from the current sample of nine transiting planets, only HD 209458 (and possibly OGLE-10b) have anomalously large radii and low densities. We note that due to the proximity of its parent star, HD 189733b currently has one of the most precise radius determinations among extrasolar planets. We calculate new ephemerides, P=2.218573+/-0.000020-days and T0=2453639.39420+/-0.00024 (HJD), and estimate the timing offsets of the 11 distinct transits with respect to the predictions of a constant orbital period, which can be used to reveal the presence of additional planets in the system.
- ID:
- ivo://CDS.VizieR/J/A+A/540/A82
- Title:
- CaIIHK emission in stars with close-in planets
- Short Name:
- J/A+A/540/A82
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The planet-star interaction is manifested in many ways. It has been found that a close-in exoplanet causes small but measurable variability in the cores of a few lines in the spectra of several stars, which corresponds to the orbital period of the exoplanet. Stars with and without exoplanets may have different properties. The main goal of our study is to search for the influence that exoplanets might have on atmospheres of their host stars. Unlike the previous studies, we do not study changes in the spectrum of a host star or differences between stars with and without exoplanets. We aim to study a large number of stars with exoplanets and the current level of their chromospheric activity and to look for a possible correlation with the exoplanetary properties.
- ID:
- ivo://CDS.VizieR/J/ApJ/744/138
- Title:
- Calibrated visibilities of {epsilon} Eri
- Short Name:
- J/ApJ/744/138
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We measured the angular diameter of the exoplanet host star {epsilon} Eridani using the Navy Optical Interferometer. We determined its physical radius, effective temperature, and mass by combining our measurement with the star's parallax, photometry from the literature, and the Yonsei-Yale isochrones, respectively. We used the resulting stellar mass of 0.82+/-0.05M_{sun}_ plus the mass function from Benedict et al. to calculate the planet's mass, which is 1.53+/-0.22M_Jupiter_. Using our new effective temperature, we also estimated the extent of the habitable zone for the system.
- ID:
- ivo://CDS.VizieR/J/MNRAS/414/108
- Title:
- Calibrator of exoplanet-host stars
- Short Name:
- J/MNRAS/414/108
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Phase-referenced interferometric astrometry offers the possibility to look for exoplanets around bright stars. Instruments like PRIMA (Phase-Referenced Imaging and Micro-arcsecond Astrometry) will measure the astrometric wobble of a candidate star due to an exoplanet relative to a close-by 'calibrator' star, located within the instrument's observing field (1-arcmin in the PRIMA case). Stars with already known exoplanets will constitute the first targets for this technique, as it will provide a way to further specify the characteristics of the known exoplanets, such as the inclinations. The main requirement is to have a calibrator in the vicinity of the star. We provide here a list of calibrators for all stars with known exoplanets obtained using data mining and Virtual Observatory techniques. This list is available online and revised regularly. The calibrators are found from catalogues available at Centre de Donnees astronomiques de Strasbourg (CDS) using the SearchCal software developed at Jean-Marie Mariotti Center (JMMC). In our test case, the calibrators are found within 1 arcmin angular distance for approximately 50 per cent of the stars tested, and often closer. They are all faint objects from the Two Micron All Sky Survey (2MASS) with K magnitudes between 13 and 15. A list of the most promising targets is also given.
- ID:
- ivo://CDS.VizieR/J/AJ/154/109
- Title:
- California-Kepler Survey (CKS). III. Planet radii
- Short Name:
- J/AJ/154/109
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The size of a planet is an observable property directly connected to the physics of its formation and evolution. We used precise radius measurements from the California-Kepler Survey to study the size distribution of 2025 Kepler planets in fine detail. We detect a factor of >=2 deficit in the occurrence rate distribution at 1.5-2.0R_{Earth}_. This gap splits the population of close-in (P<100days) small planets into two size regimes: R_P_<1.5R_{Earth}_ and R_P_=2.0--3.0R_{Earth}_, with few planets in between. Planets in these two regimes have nearly the same intrinsic frequency based on occurrence measurements that account for planet detection efficiencies. The paucity of planets between 1.5 and 2.0R_{Earth}_ supports the emerging picture that close-in planets smaller than Neptune are composed of rocky cores measuring 1.5R_{Earth}_ or smaller with varying amounts of low-density gas that determine their total sizes.
- ID:
- ivo://CDS.VizieR/J/AJ/154/108
- Title:
- California-Kepler Survey (CKS). II. Properties
- Short Name:
- J/AJ/154/108
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present stellar and planetary properties for 1305 Kepler Objects of Interest hosting 2025 planet candidates observed as part of the California-Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetary radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry.
- ID:
- ivo://CDS.VizieR/J/AJ/154/107
- Title:
- California-Kepler Survey (CKS). I. 1305 stars
- Short Name:
- J/AJ/154/107
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The California-Kepler Survey (CKS) is an observational program developed to improve our knowledge of the properties of stars found to host transiting planets by NASA's Kepler Mission. The improvement stems from new high-resolution optical spectra obtained using HIRES at the W. M. Keck Observatory. The CKS stellar sample comprises 1305 stars classified as Kepler objects of interest, hosting a total of 2075 transiting planets. The primary sample is magnitude-limited (K_p_<14.2) and contains 960 stars with 1385 planets. The sample was extended to include some fainter stars that host multiple planets, ultra-short period planets, or habitable zone planets. The spectroscopic parameters were determined with two different codes, one based on template matching and the other on direct spectral synthesis using radiative transfer. We demonstrate a precision of 60K in T_eff_, 0.10dex in logg, 0.04dex in [Fe/H], and 1.0km/s in Vsini. In this paper, we describe the CKS project and present a uniform catalog of spectroscopic parameters. Subsequent papers in this series present catalogs of derived stellar properties such as mass, radius, and age; revised planet properties; and statistical explorations of the ensemble. CKS is the largest survey to determine the properties of Kepler stars using a uniform set of high-resolution, high signal-to-noise ratio spectra. The HIRES spectra are available to the community for independent analyses.
- ID:
- ivo://CDS.VizieR/J/MNRAS/437/3133
- Title:
- Candidate Neptunes around late-type dwarfs
- Short Name:
- J/MNRAS/437/3133
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Studies of transiting Neptune-size planets orbiting close to nearby bright stars can inform theories of planet formation because mass and radius and therefore mean density can be accurately estimated and compared with interior models. The distribution of such planets with stellar mass and orbital period relative to their Jovian-mass counterparts can test scenarios of orbital migration, and whether "hot" (period <10d) Neptunes evolved from "hot" Jupiters as a result of mass loss. We searched 1763 late K and early M dwarf stars for transiting Neptunes by analyzing photometry from the Wide Angle Search for Planets and obtaining high-precision (<=10^-3^) follow-up photometry of stars with candidate transit signals. We identified 92 candidate signals among 80 other stars and carried out 148 observations of predicted candidate transits with 1-2m telescopes.