GJ1214b, the 6.55 Earth-mass transiting planet recently discovered by the MEarth team, has a mean density of 35% of that of the Earth. It is thought that this planet is either a mini-Neptune, consisting of a rocky core with a thick, hydrogen-rich atmosphere, or a planet with a composition dominated by water. In the case of a hydrogen-rich atmosphere, molecular absorption and scattering processes may result in detectable radius variations as a function of wavelength. The aim of this paper is to measure these variations. We have obtained observations of the transit of GJ1214b in the r- and I-band with the Isaac Newton Telescope (INT), in the g-, r-, i- and z-bands with the 2.2m MPI/ESO telescope, in the Ks-band with the Nordic Optical Telescope (NOT), and in the Kc-band with the William Herschel Telescope (WHT). By comparing the transit depth between the the different bands, which is a measure for the planet-to-star size ratio, the atmosphere is investigated. We do not detect clearly significant variations in the planet-to-star size ratio as function of wavelength. Although the ratio at the shortest measured wavelength, in g-band, is 2sigma larger than in the other bands. The uncertainties in the Ks and Kc bands are large, due to systematic features in the light curves. The tentative increase in the planet-to-star size ratio at the shortest wavelength could be a sign of an increase in the effective planet-size due to Rayleigh scattering, which would require GJ1214b to have a hydrogen-rich atmosphere. If true, then the atmosphere has to have both clouds, to suppress planet-size variations at red optical wavelengths, as well as a sub-solar metallicity, to suppress strong molecular features in the near- and mid-infrared However, star spots, which are known to be present on the hoststar's surface, can (partly) cancel out the expected variations in planet-to-star size ratio, because the lower surface temperature of the spots causes the effective size of the star to vary with wavelength. A hypothetical spot-fraction of 10%, corresponding to an average stellar dimming of 5% in the i-band, would be able to raise the near- and mid-infrared points sufficiently with respect to the optical measurements to be inconsistent with a water-dominated atmosphere. Modulation of the spot fraction due to the stellar rotation would in such case cause the observed flux variations of GJ1214.
GJ 1214b is one of the few known transiting super-Earth-sized exoplanets with a measured mass and radius. It orbits an M-dwarf, only 14.55pc away, making it a favorable candidate for follow-up studies. However, the composition of GJ 1214b's mysterious atmosphere has yet to be fully unveiled. Our goal is to distinguish between the various proposed atmospheric models to explain the properties of GJ 1214b: hydrogen-rich or hydrogen-He mix, or a heavy molecular weight atmosphere with reflecting high clouds, as latest studies have suggested. Wavelength-dependent planetary radii measurements from the transit depths in the optical/NIR are the best tool to investigate the atmosphere of GJ 1214b. We present here (i) photometric transit observations with a narrow-band filter centered on 2.14-microns and a broad-band I-Bessel filter centered on 0.8665-microns, and (ii) transmission spectroscopy in the H and K atmospheric windows that cover three transits. The obtained photometric and spectrophotometric time series were analyzed with MCMC simulations to measure the planetary radii as a function of wavelength. We determined radii ratios of 0.1173 for I-Bessel and 0.11735 at 2.14-microns. Our measurements indicate a flat transmission spectrum, in agreement with last atmospheric models that favor featureless spectra with clouds and high molecular weight compositions.
Photometry is presented of the 2007 December 25 transit of HD 17156b, which has the longest orbital period and highest orbital eccentricity of all the known transiting exoplanets. New measurements of the stellar radial velocity are also presented. All the data are combined and integrated with stellar-evolutionary modeling to derive refined system parameters.
We report the discovery of WASP-21b, a new transiting exoplanet discovered by the Wide Angle Search for Planets (WASP) Consortium and established and characterized with the FIES, SOPHIE, CORALIE and HARPS fiber-fed echelle spectrographs. A 4.3-d period, 1.1% transit depth and 3.4-h duration are derived for WASP-21b using SuperWASP-North and high precision photometric observations at the Liverpool Telescope. Simultaneous fitting to the photometric and radial velocity data with a Markov Chain Monte Carlo procedure leads to a planet in the mass regime of Saturn. With a radius of 1.07R_Jup_ and mass of 0.30M_Jup_, WASP-21b has a density close to 0.24{rho}_Jup_ corresponding to the distribution peak at low density of transiting gaseous giant planets. With a host star metallicity [Fe/H] of -0.46, WASP-21b strengthens the correlation between planetary density and host star metallicity for the five known Saturn-like transiting planets. Furthermore there are clear indications that WASP-21b is the first transiting planet belonging to the thick disc.
The radii of giant planets, as measured from transit observations, may vary with wavelength due to Rayleigh scattering or variations in opacity. Such an effect is predicted to be large enough to detect using ground-based observations at multiple wavelengths. We present the defocused photometry of a transit in the HAT-P-5 system, obtained simultaneously through Stroemgren u, Gunn g and r, and Johnson I filters. Two more transit events were observed through a Gunn r filter.
We present z-band photometry of three consecutive transits of the exoplanet TrES-1, with an accuracy of 0.15% and a cadence of 40s. We improve on estimates of the system parameters, finding in particular that the planetary radius is 1.081+/-0.029R_Jup_ and the stellar radius is 0.011+/-0.020R_{sun}_. The uncertainties include both the statistical error and the systematic error arising from the uncertainty in the stellar mass. The transit times are determined to within about 15s and allow us to refine the estimate of the mean orbital period: P=3.0300737+/-0.0000026days. We find no evidence for starspots or other irregularities that have been previously reported.
We present results of an extensive photometric search for planetary and low-luminosity object transits in the Galactic disk stars commencing the third phase of the Optical Gravitational Lensing Experiment - OGLE-III.
We present photometry of 13 transits of XO-3b, a massive transiting planet on an eccentric orbit. Previous data led to two inconsistent estimates of the planetary radius. Our data strongly favor the smaller radius, with increased precision: R_p_=1.217+/-0.073R_{sun}_. A conflict remains between the mean stellar density determined from the light curve, and the stellar surface gravity determined from the shapes of spectral lines. We argue the light curve should take precedence, and revise the system parameters accordingly. The planetary radius is about 1{sigma} larger than the theoretical radius for a hydrogen-helium planet of the given mass and insolation. To help in planning future observations, we provide refined transit and occultation ephemerides.
We present 11 high-precision photometric transit observations of the transiting super-Earth planet GJ 1214 b. Combining these data with observations from other authors, we investigate the ephemeris for possible signs of transit timing variations (TTVs) using a Bayesian approach. The observations were obtained using telescope-defocusing techniques, and achieve a high precision with random errors in the photometry as low as 1 mmag per point. To investigate the possibility of TTVs in the light curve, we calculate the overall probability of a TTV signal using Bayesian methods.