- ID:
- ivo://CDS.VizieR/J/ApJ/490/328
- Title:
- "Mass Discrepancy" for Massive Stars
- Short Name:
- J/ApJ/490/328
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Stellar evolutionary models are often used to infer a star's mass via its luminosity, but empirical checks on the accuracy of the theoretical mass-luminosity relation for very massive stars have been lacking. This is of particular concern given that modern atmosphere models yield systematically smaller masses for massive stars than do evolutionary models, with the discrepancy a factor of two for Of stars. We attempt to resolve this mass discrepancy by obtaining new, high-resolution optical data on seven early-type spectroscopic binaries: V453 Cyg, HD 191201, V382 Cyg, Y Cyg, HD 206267, DH Cep, and AH Cep. Our study produces improved spectral subtypes for the components of these systems, crucial for evaluating their luminosities and locations in the H-R diagram. Our radial velocity study utilizes a measuring method which explicitly accounts for the effects of pair-blending. We combine our new orbit solutions with existing data on inclinations and distances when available to compare the orbital masses with evolutionary models, and we find good agreement in all cases where the stars are non-interacting. (The components of V382 Cyg and DH Cep fill their Roche lobes, and in both cases we find masses substantially lower than the masses inferred from evolutionary tracks, suggesting that significant material has been lost rather than transferred. We confirm that this same trend exists for other systems drawn from the literature.) Our own data extends to only 15 M_{sun}_, although photometric inclination determinations for HD 191201 and HD 206267 should prove possible, and will provide examples of higher mass systems. We briefly discuss suitable systems from the literature, and conclude that orbit solutions provide good agreement with the evolutionary models to 25 M_{sun}_. Beyond this, most known binaries either fill their Roche lobes or have other complications. We also discuss five systems for which our improved data and analysis failed to yield acceptable orbit solutions: EO Aur, IU Aur, V640 Mon (Plaskett's star), LY Aur, and 29 UW CMa all remained intractable, despite improved data.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/149/26
- Title:
- Massive binary stars from an HST/FGS survey
- Short Name:
- J/AJ/149/26
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.01'' and 1.0'' and brighter than {delta}m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.
- ID:
- ivo://CDS.VizieR/J/A+A/617/A66
- Title:
- Massive eclipsing SB2 in Arches cluster spectra
- Short Name:
- J/A+A/617/A66
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have carried out a spectroscopic variability survey of some of the most massive stars in the Arches cluster, using K-band observations obtained with SINFONI on the VLT. One target, F2, exhibits substantial changes in radial velocity; in combination with new KMOS and archival SINFONI spectra, its primary component is found to undergo radial velocity variation with a period of 10.483+/-0.002d and an amplitude of ~350km/s. A secondary radial velocity curve is also marginally detectable. We reanalyse archival NAOS-CONICA photometric survey data in combination with our radial velocity results to confirm this object as an eclipsing SB2 system, and the first binary identified in the Arches. We model it as consisting of an 82+/-12M_{sun}_ WN8-9h primary and a 60+/-8M_{sun}_ O5-6 Ia+ secondary, and as having a slightly eccentric orbit, implying an evolutionary stage prior to strong binary interaction. As one of four X-ray bright Arches sources previously proposed as colliding-wind massive binaries, it may be only the first of several binaries to be discovered in this cluster, presenting potential challenges to recent models for the Arches' age and composition. It also appears to be one of the most massive binaries detected to date; the primary's calculated initial mass of >~120M_{sun}_ would arguably make this the most massive binary known in the Galaxy.
- ID:
- ivo://CDS.VizieR/J/A+A/584/A5
- Title:
- Massive LMC stars AAOmega spectroscopy
- Short Name:
- J/A+A/584/A5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present spectral classifications from optical spectroscopy of 263 massive stars in the north-eastern region of the Large Magellanic Cloud. The observed two-degree field includes the massive 30 Doradus star-forming region, the environs of SN1987A, and a number of star-forming complexes to the south of 30 Dor. These are the first classifications for the majority (203) of the stars and include eleven double-lined spectroscopic binaries. The sample also includes the first examples of early OC-type spectra (AAOmega 30 Dor 248 and 280), distinguished by the weakness of their nitrogen spectra and by CIV {lambda}4658 emission. We propose that these stars have relatively unprocessed CNO abundances compared to morphologically normal O-type stars, indicative of an earlier evolutionary phase. From analysis of observations obtained on two consecutive nights, we present radial-velocity estimates for 233 stars, finding one apparent single-lined binary and nine (>3{sigma}) outliers compared to the systemic velocity; the latter objects could be runaway stars or large-amplitude binary systems and further spectroscopy is required to investigate their nature.
- ID:
- ivo://CDS.VizieR/J/MNRAS/324/33
- Title:
- MC WC/WO stars - Colliding winds
- Short Name:
- J/MNRAS/324/33
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Files br22rv.dat, br31rv.dat, br32rv.dat, ab8rv.dat, wr9rv.dat and wr30arv.dat contain spectroscopic radial velocity data of six Magellanic Cloud WC/WO class binary Wolf-Rayet stars. The data are derived from the C IV 5808{AA} emission line and the He II 5412{AA} absorption line. The data were obtained during one mission in 1984 at CTIO and two missions in 1993 at CASLEO.
- ID:
- ivo://CDS.VizieR/J/A+A/536/A55
- Title:
- Milli-arcsecond imaging of SS Lep
- Short Name:
- J/A+A/536/A55
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Determining the mass transfer in a close binary system is of prime importance for understanding its evolution. SS Leporis, a symbiotic star showing the Algol paradox and presenting clear evidence of ongoing mass transfer, in which the donor has been thought to fill its Roche lobe, is a target particularly suited to this kind of study. Since previous spectroscopic and interferometric observations have not been able to fully constrain the system morphology and characteristics, we go one step further to determine its orbital parameters, for which we need new interferometric observations directly probing the inner parts of the system with a much higher number of spatial frequencies. We use data obtained at eight different epochs with the VLTI instruments AMBER and PIONIER in the H and K bands. We performed aperture synthesis imaging to obtain the first model-independent view of this system. We then modelled it as a binary (whose giant is spatially resolved) that is surrounded by a circumbinary disc.
- ID:
- ivo://CDS.VizieR/J/ApJS/180/117
- Title:
- MK classifications of spectroscopic binaries
- Short Name:
- J/ApJS/180/117
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- New MK spectral classifications are given for 145 spectroscopic binaries (SBs) with A-F primaries because two-dimensional types are lacking for more than one-third of the A-F SBs with known orbital elements in the current catalog. Compared with the classifications by Morgan, Keenan, and their students, the new classifications give types that are 1.1+/-0.2 subclasses later and 0.7+/-0.1 luminosity classes fainter. Also listed are selected published MK types from Brian Skiff's recent compilation (Cat. <B/mk>).
- ID:
- ivo://CDS.VizieR/J/A+A/655/A4
- Title:
- MONOS II. SB1 Orbital review and analysis
- Short Name:
- J/A+A/655/A4
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Massive stars are a key element to understand the chemical and dynamical evolution of galaxies. Stellar evolution is conditioned by many factors: rotation, mass loss, and interaction with other objects are the most important ones for massive stars. During the first evolutionary stages of stars with initial masses (i.e. M_ZAMS_) in the M_ZAMS_~18-70M_{sum}_ range they are of spectral type O. Given that stars in this mass range spend roughly 90% of their lifetime as O-type stars, establishing the multiplicity frequency and binary properties of O-type stars is crucial for many fields of modern astrophysics. The aim of the MONOS project is to collect information to study Northern Galactic O-type spectroscopic binaries. In this second paper, we tackle the study of the 35 single line spectroscopic binary (SB1) systems identified in the previous paper of the series Maiz Apellaniz et al., (2019, Cat. J/A+A/626/A20) analyze our data, and review the literature on the orbits of the systems. We have measured ~4500 radial velocities for a selection of diagnostic lines for the ~700 spectra of the studied systems in our database, for which we have used two different methods: Gaussian fit for several lines per object and cross-correlation with synthetic spectra computed with the FASTWIND stellar atmospheric code. We have also explored the photometric data delivered by the TESS mission to analyze the light-curve (LC) of the systems extracting 31 of them. We have explored the possible periods with the Lomb-Scargle method and, whenever possible, calculated the orbital solutions using the SBOP&GBART codes. For those systems in which an improved solution was possible we have merged our RVs with those in the literature and calculated a combined solution. As a result of this work, of the 35 SB1 systems identified in MONOS I, we have confirmed 21 systems as SB1 with good orbits, discarded the binary nature of 6 stars (9 Sge, HD 192281, HDE 229232 AB, 68 Cyg, HD 108 and {alpha} Cam), and left 6 stars as inconclusive due to lack of data. The remaining two stars are 15 Mon Aa which has been classified as SB2 and Cyg OB2-22 C for which we find evidence that it is most likely a triple system where the O star is orbiting an eclipsing SB1. We have also recalculated 20 new orbital solutions, including the first spectroscopic orbital solution for V747 Cep. For Cyg OB2-22 C we have obtained new ephemerides but no new orbit.
- ID:
- ivo://CDS.VizieR/J/A+A/626/A20
- Title:
- MONOS. I. Spectral classifications
- Short Name:
- J/A+A/626/A20
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Multiplicity in massive stars is a key element to understand the chemical and dynamical evolution of galaxies. Among massive stars, those of O type play a crucial role due to their high masses and short lifetimes. MONOS (Multiplicity Of Northern O-type Spectroscopic systems) is a project designed to collect information and study O-type spectroscopic binaries with {delta}>20{deg}. In this first paper we describe the sample and provide spectral classifications and additional information for objects with previous spectroscopic and/or eclipsing binary orbits. In future papers we will test the validity of previous solutions and calculate new spectroscopic orbits. The spectra in this paper have two sources: the Galactic O-Star Spectroscopic Survey (GOSSS), a project that is obtaining blue-violet R~2500 spectroscopy of thousands of massive stars, and LiLiMaRlin, a library of libraries of high-resolution spectroscopy of massive stars obtained from four different surveys (CAFE-BEANS, OWN, IACOB, and NoMaDS) and additional data from our own observing programs and public archives. We also use lucky images obtained with AstraLux. We present homogeneous spectral classifications for 92 O-type spectroscopic multiple systems and ten optical companions, many of them original.We discuss the visual multiplicity of each system with the support of AstraLux images and additional sources. For eleven O-type objects and for six B-type objects we present their first GOSSS spectral classifications. For two known eclipsing binaries we detect double absorption lines (SB2) or a single moving line (SB1) for the first time, to which we add a third system already reported by us recently. For two previous SB1 systems we detect their SB2 nature for the first time and give their first separate spectral classifications, something we also do for a third object just recently identified as a SB2. We also detect nine new astrometric companions and provide updated information on several others. We emphasize the results for two stars: for {sigma} Ori AaAbB we provide spectral classifications for the three components with a single observation for the first time thanks to a lucky spectroscopy observation obtained close to the Aa,Ab periastron and for {theta}^1^ Ori CaCb we add it to the class of Galactic Of?p stars, raising the number of its members to six. Our sample of O-type spectroscopic binaries contains more triple- or higher-order systems than double systems.
- ID:
- ivo://CDS.VizieR/J/A+A/394/151
- Title:
- Multiplicity among chemically peculiar stars II
- Short Name:
- J/A+A/394/151
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new orbits for sixteen Ap spectroscopic binaries, four of which might in fact be Am stars, and give their orbital elements. Four of them are SB2 systems: HD 5550, HD 22128, HD 56495 and HD 98088. The twelve other stars are : HD 9996, HD 12288, HD 40711, HD 54908, HD 65339, HD 73709, HD 105680, HD 138426, HD 184471, HD 188854, HD 200405 and HD 216533. Rough estimates of the individual masses of the components of HD 65339 (53 Cam) are given, combining our radial velocities with the results of speckle interferometry and with Hipparcos parallaxes. Considering the mass functions of 74 spectroscopic binaries from this work and from the literature, we conclude that the distribution of the mass ratio is the same for cool Ap stars as for normal G dwarfs. Therefore, the only differences between binaries with normal stars and those hosting an Ap star lie in the period distribution: except for the case of HD 200405, all orbital periods are longer than (or equal to) 3 days. A consequence of this peculiar distribution is a deficit of null eccentricities. There is no indication that the secondary has a special nature, like e.g. a white dwarf.