Measurements of comet Halley in the spectral channel of IKS on board
the Vega-1 spacecraft. Data are retrieved from the PDS Small Bodies
Node data set (2011 reformatted version) and updated. The data set
consists in 101 tables providing the radiance spectrum of comet Halley
from various distances, plus two composite spectra. For details and
further references, see: Combes M. et al., 1988, The 2.5-12 micron
Spectrum of Comet Halley from the IKS-VEGA Experiment, Icarus, 76,
404-436 [1988Icar...76..404C]
We aim to investigate the physical and chemical properties of the molecular envelope of the oxygen-rich AGB star IK Tau. We carried out a millimeter wavelength line survey between ~79 and 356GHz with the IRAM-30m telescope. We analysed the molecular lines detected in IK Tau using the population diagram technique to derive rotational temperatures and column densities. We conducted a radiative transfer analysis of the SO_2_ lines, which also helped us to verify the validity of the approximated method of the population diagram for the rest of the molecules.
We present a detailed photometric study of the central star system of the planetary nebula Hen 2-11, selected for study because of its low-ionisation filaments and bipolar morphology - traits which have been strongly linked with central star binarity. Photometric monitoring with NTT-EFOSC2 reveals a highly irradiated, double-eclipsing, post-common-envelope system with a period of 0.609 d. Modelling of the lightcurve indicates that the nebular progenitor is extremely hot, while the secondary in the system is probably a K-type main sequence star. The chemical composition of the nebula is analysed, showing Hen 2-11 to be a medium-excitation non-Type I nebula. A simple photoionisation model is constructed determining abundance ratios of C/O and N/O which would be consistent with the common-envelope cutting short the AGB evolution of the nebular progenitor. The detection of a post-common-envelope binary system at the heart of Hen 2-11 further strengthens the link between binary progeny and the formation of axisymmetric planetary nebulae with patterns of low-ionisation filaments, clearly demonstrating their use as morphological indicators of central star binarity.
We present the spectroscopic and photometric study of five intermediate-luminosity red transients (ILRTs), namely AT 2010dn, AT 2012jc, AT 2013la, AT 2013lb, and AT 2018aes. They share common observational properties and belong to a family of objects similar to the prototypical ILRT SN 2008S. These events have a rise time that is less than 15 days and absolute peak magnitudes of between -11:5 and -14:5mag. Their pseudo-bolometric light curves peak in the range 0.5-9.0*10^40^erg/s and their total radiated energies are on the order of (0.3-3)*10^47^erg. After maximum brightness, the light curves show a monotonic decline or a plateau, resembling those of faint supernovae IIL or IIP, respectively. At late phases, the light curves flatten, roughly following the slope of the ^56^Co decay. If the late-time power source is indeed radioactive decay, these transients produce ^56^Ni masses on the order of 10^-4^ to 10^-3^M_{sun}_. The spectral energy distribution of our ILRT sample, extending from the optical to the mid-infrared (MIR) domain, reveals a clear IR excess soon after explosion and non-negligible MIR emission at very late phases. The spectra show prominent H lines in emission with a typical velocity of a few hundred km/s, along with CaII features. In particular, the [CaII]7291,7324 doublet is visible at all times, which is a characteristic feature for this family of transients. The identified progenitor of SN 2008S, which is luminous in archival Spitzer MIR images, suggests an intermediate-mass precursor star embedded in a dusty cocoon. We propose the explosion of a super-asymptotic giant branch star forming an electron-capture supernova as a plausible explanation for these events.
We present a galaxy survey of the field surrounding PKS 0405-123 performed with the WFCCD spectrometer at Las Campanas Observatory. The survey is comprised of two data sets: (1) a greater than 95% complete survey to R=20mag of the field centered on PKS 0405-123 with 10' radius (L~0.1L* and radius of 1Mpc at z=0.1); and (2) a set of four discontiguous (i.e., non-overlapping), flanking fields covering ~1deg^2^ area with completeness ~90% to R=19.5mag. With these data sets, one can examine the local and large-scale galactic environment of the absorption systems identified toward PKS 0405-123. In this paper, we focus on the O VI systems analyzed in Paper I (Prochaska et al., 2004, Cat. <J/ApJ/617/718>). The results suggest that this gas arises in a diverse set of galactic environments including the halos of individual galaxies, galaxy groups, filamentary-like structures, and also regions devoid of luminous galaxies. In this small sample, there are no obvious trends between galactic environment and the physical properties of the gas. Furthermore, we find similar results for a set of absorption systems with comparable NHI but no detectable metal lines. The observations indicate that metals are distributed throughout a wide range of environments in the local universe. Future papers in this series will address the distribution of galactic environments associated with metal-line systems and the Ly forest based on data for over 10 additional fields. All of the spectra and fits tables are available at http://www.ucolick.org/~xavier/WFCCDOVI/
RX J0848.6+4453 (Lynx W) at redshift 1.27 is part of the Lynx Supercluster of galaxies. We present an analysis of the stellar populations and star formation history for a sample of 24 members of the cluster. Our study is based on deep optical spectroscopy obtained with Gemini North combined with imaging data from Hubble Space Telescope. Focusing on the 13 bulge-dominated galaxies for which we can determine central velocity dispersions, we find that these show a smaller evolution with redshift of sizes and velocity dispersions than reported for field galaxies and galaxies in poorer clusters. Our data show that the galaxies in RX J0848.6+4453 populate the fundamental plane (FP) similar to that found for lower-redshift clusters. The zero-point offset for the FP is smaller than expected if the cluster's galaxies are to evolve passively through the location of the FP we established in our previous work for z=0.8-0.9 cluster galaxies and then to the present-day FP. The FP zero point for RXJ0848.6+4453 corresponds to an epoch of last star formation at z_form_=1.95_-0.15_^+0.22^. Further, we find that the spectra of the galaxies in RXJ0848.6+4453 are dominated by young stellar populations at all galaxy masses and in many cases show emission indicating low-level ongoing star formation. The average age of the young stellar populations as estimated from the strength of the high-order Balmer line H{zeta} is consistent with a major star formation episode 1-2Gyr prior, which in turn agrees with z_form_=1.95. These galaxies dominated by young stellar populations are distributed throughout the cluster. We speculate that low-level star formation has not yet been fully quenched in the center of this cluster, possibly because the cluster is significantly poorer than other clusters previously studied at similar redshifts, which appear to have very little ongoing star formation in their centers. The mixture in RXJ0848.6+4453 of passive galaxies with young stellar populations and massive galaxies still experiencing some star formation appears similar to the galaxy populations recently identified in two z{approx}2 clusters.
We present an analysis of stellar populations and evolutionary history of galaxies in three similarly rich galaxy clusters MS0451.6-0305 (z=0.54), RXJ0152.7-1357 (z=0.83), and RXJ1226.9+3332 (z=0.89). Our analysis is based on high signal-to-noise ground-based optical spectroscopy and Hubble Space Telescope imaging for a total of 17-34 members in each cluster. Using the dynamical masses together with the effective radii and the velocity dispersions, we find no indication of evolution of sizes or velocity dispersions with redshift at a given galaxy mass. We establish the Fundamental Plane (FP) and scaling relations between absorption line indices and velocity dispersions. We confirm that the FP is steeper at z~0.86 compared to the low-redshift FP, indicating that under the assumption of passive evolution the formation redshift, z_form_, depends on the galaxy velocity dispersion (or alternatively mass). At a velocity dispersion of {sigma}=125km/s (Mass=10^10.55^M_{sun}_) we find z_form_=1.24+/-0.05, while at {sigma}=225km/s (Mass=10^11.36^M_{sun}_) the formation redshift is z_form_=1.95^+0.3^_-0.2_, for a Salpeter initial mass function. The three clusters follow similar scaling relations between absorption line indices and velocity dispersions as those found for low-redshift galaxies. The zero point offsets for the Balmer lines depend on cluster redshifts. However, the offsets indicate a slower evolution, and therefore higher formation redshift, than the zero point differences found from the FP, if interpreting the data using a passive evolution model. Specifically, the strength of the higher order Balmer lines H{delta} and H{gamma} implies z_form_>2.8. The scaling relations for the metal indices in general show small and in some cases insignificant zero point offsets, favoring high formation redshifts for a passive evolution model.
We present new observations of the three nearest early-type galaxy (ETG) strong lenses discovered in the SINFONI Nearby Elliptical Lens Locator Survey (SNELLS). Based on their lensing masses, these ETGs were inferred to have a stellar initial mass function (IMF) consistent with that of the Milky Way, not the bottom-heavy IMF that has been reported as typical for high-{sigma} ETGs based on lensing, dynamical, and stellar population synthesis techniques. We use these unique systems to test the consistency of IMF estimates derived from different methods. We first estimate the stellar M*/L using lensing and stellar dynamics. We then fit high-quality optical spectra of the lenses using an updated version of the stellar population synthesis models developed by Conroy & van Dokkum. When examined individually, we find good agreement among these methods for one galaxy. The other two galaxies show 2-3{sigma} tension with lensing estimates, depending on the dark matter contribution, when considering IMFs that extend to 0.08M_{sun}_. Allowing a variable low-mass cutoff or a nonparametric form of the IMF reduces the tension among the IMF estimates to <2{sigma}. There is moderate evidence for a reduced number of low-mass stars in the SNELLS spectra, but no such evidence in a composite spectrum of matched-{sigma} ETGs drawn from the SDSS. Such variation in the form of the IMF at low stellar masses (m<~0.3M_{sun}_), if present, could reconcile lensing/dynamical and spectroscopic IMF estimates for the SNELLS lenses and account for their lighter M*/L relative to the mean matched-{sigma} ETG. We provide the spectra used in this study to facilitate future comparisons.
SN Ia cosmology depends on the ability to fit and standardize observations of supernova magnitudes with an empirical model. We present here a series of new models of SN Ia spectral time series that capture a greater amount of supernova diversity than is possible with the models that are currently customary. These are entitled SuperNova Empirical MOdels (SNEMO; https://snfactory.lbl.gov/snemo). The models are constructed using spectrophotometric time series from 172 individual supernovae from the Nearby Supernova Factory, comprising more than 2000 spectra. Using the available observations, Gaussian processes are used to predict a full spectral time series for each supernova. A matrix is constructed from the spectral time series of all the supernovae, and Expectation Maximization Factor Analysis is used to calculate the principal components of the data. K-fold cross-validation then determines the selection of model parameters and accounts for color variation in the data. Based on this process, the final models are trained on supernovae that have been dereddened using the Fitzpatrick and Massa extinction relation. Three final models are presented here: SNEMO2, a two-component model for comparison with current Type Ia models; SNEMO7, a seven-component model chosen for standardizing supernova magnitudes, which results in a total dispersion of 0.100mag for a validation set of supernovae, of which 0.087mag is unexplained (a total dispersion of 0.113mag with an unexplained dispersion of 0.097mag is found for the total set of training and validation supernovae); and SNEMO15, a comprehensive 15-component model that maximizes the amount of spectral time-series behavior captured.
We present an analysis of the ages and star formation history of the F-type stars in the Upper Scorpius (US), Upper Centaurus-Lupus (UCL), and Lower Centaurus-Crux (LCC) subgroups of Scorpius-Centaurus (Sco-Cen), the nearest OB association. Our parent sample is the kinematically selected Hipparcos sample of de Zeeuw et al. (1999, Cat. J/AJ/117/354), restricted to the 138 F-type members. We have obtained classification-resolution optical spectra and have also determined the spectroscopic accretion disk fraction. With Hipparcos and 2MASS photometry, we estimate the reddening and extinction for each star and place the candidate members on a theoretical H-R diagram. For each subgroup we construct empirical isochrones and compare to published evolutionary tracks.