- ID:
- ivo://CDS.VizieR/J/A+A/611/A11
- Title:
- STAGGER-grid of 3D stellar models. V.
- Short Name:
- J/A+A/611/A11
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have calculated spectra from 1000 to 200000{AA} with a constant resolving power of {lambda}/{Delta}{lambda}=20000 and from 8470 and 8710{AA} (Gaia Radial Velocity Spectrometer - RVS - spectral range) with a constant resolving power of {lambda}/{Delta}{lambda}=300000. This for the Stagger-grid 3D stellar atmosphere models in the ranges: Teff from 4000 to 7000K, logg from 1.5 to 5.0, and [Fe/H], from -4.0 to +0.5. We used synthetic spectra to compute theoretical colours in the Johnson-Cousins UBV(RI)C, SDSS, 2MASS, Gaia, SkyMap- per, Stroemgren systems, and HST-WFC3.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/510/A21
- Title:
- Stellar Limb-Darkening Coefficients
- Short Name:
- J/A+A/510/A21
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Transiting exoplanets provide unparalleled access to the fundamental parameters of both extrasolar planets and their host stars. We present limb-darkening coefficients (LDCs) for the exoplanet hunting CoRot and Kepler missions. The LDCs are calculated with ATLAS stellar atmospheric model grids and span a wide range of T_eff_, logg, and metallically [M/H]. Both CoRot and Kepler use wide nonstandard photometric filters, and are producing a large inventory of high- quality transiting lightcurves, sensitive to stellar limb darkening. Comparing the stellar model limb darkening to results from the first seven CoRot planets, we find better fits are found when two model intensities at the limb are excluded in the coefficient calculations. This calculation method can help to avoid a major deficiency present at the limbs of the 1D stellar models.
- ID:
- ivo://CDS.VizieR/J/A+A/589/A61
- Title:
- Stellar parameters and abundances for M30
- Short Name:
- J/A+A/589/A61
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The prediction of the PLANCK-constrained primordial lithium abundance in the Universe is in discordance with the observed Li abundances in warm Population II dwarf and subgiant stars. Among the physically best motivated ideas, it has been suggested that this discrepancy can be alleviated if the stars observed today had undergone photospheric depletion of lithium. The cause of this depletion is investigated by accurately tracing the behaviour of the lithium abundances as a function of effective temperature. Globular clusters are ideal laboratories for such an abundance analysis as the relative stellar parameters of their stars can be precisely determined. We performed a homogeneous chemical abundance analysis of 144 stars in the metal-poor globular cluster M30, ranging from the cluster turnoff point to the tip of the red giant branch. Non-local thermal equilibrium (NLTE) abundances for Li, Ca, and Fe were derived where possible by fitting spectra obtained with VLT/FLAMES-GIRAFFE using the quantitative-spectroscopy package SME. Stellar parameters were derived by matching isochrones to the observed V vs V-I colour-magnitude diagram. Independent effective temperatures were obtained from automated profile fitting of the Balmer lines and by applying colour-Teff calibrations to the broadband photometry.
- ID:
- ivo://CDS.VizieR/J/A+A/567/A72
- Title:
- Stellar parameters and abundances in NGC 6752
- Short Name:
- J/A+A/567/A72
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Abundance trends in heavier elements with evolutionary phase have been shown to exist in the globular cluster NGC 6752. These trends are a result of atomic diffusion and additional (non-convective) mixing. Studying such trends can provide us with important constraints on the extent to which diffusion modifies the internal structure and surface abundances of solar-type, metal-poor stars. Taking advantage of a larger data sample, we investigate the reality and the size of these abundance trends and address questions and potential biases associated with the various stellar populations that make up NGC 6752. We perform an abundance analysis by combining photometric and spectroscopic data of 194 stars located between the turnoff point and the base of the red giant branch. Stellar parameters are derived from uvby Stromgren photometry. Using the quantitative-spectroscopy package SME, stellar surface abundances for light elements such as Li, Na, Mg, Al, and Si as well as heavier elements such as Ca, Ti, and Fe are derived in an automated way by fitting synthetic spectra to individual lines in the stellar spectra, obtained with the VLT/FLAMES-GIRAFFE spectrograph. Based on uvby Stromgren photometry, we are able to separate three stellar populations in NGC 6752 along the evolutionary sequence from the base of the red giant branch down to the turnoff point. We find weak systematic abundance trends with evolutionary phase for Ca, Ti, and Fe which are best explained by stellar-structure models including atomic diffusion with efficient additional mixing. We derive a new value for the initial lithium abundance of NGC 6752 after correcting for the effect of atomic diffusion and additional mixing which falls slightly below the predicted standard BBN value. We find three stellar populations by combining photometric and spectroscopic data of 194 stars in the globular cluster NGC 6752. Abundance trends for groups of elements, differently affected by atomic diffusion and additional mixing, are identified. Although the statistical significance of the individual trends is weak, they all support the notion that atomic diffusion is operational along the evolutionary sequence of NGC 6752.
- ID:
- ivo://CDS.VizieR/J/A+A/627/A46
- Title:
- Sunspot penumbra and umbral flashes models
- Short Name:
- J/A+A/627/A46
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The solar chromosphere and the lower transition region are believed to play a crucial role in the heating of the solar corona. Models that describe the chromosphere (and the lower transition region), accounting for its highly dynamic and structured character are, so far, found to be lacking. This is partly due to the breakdown of complete frequency redistribution (CRD) in the chromospheric layers and also because of the difficulty in obtaining complete sets of observations that adequately constrain the solar atmosphere at all relevant heights. We aim to obtain semi-empirical model atmospheres that reproduce the features of the MgII H & K line profiles that sample the middle chromosphere with focus on a sunspot. We used spectropolarimetric observations of the CaII 8542{AA} spectra obtained with the Swedish 1-m Solar Telescope and used NICOLE inversions to obtain semi-empirical model atmospheres for different features in and around a sunspot. These were used to synthesize MgII H & K spectra using the RH1.5D code, which we compared with observations taken with the Interface Region Imaging Spectrograph (IRIS). Comparison of the synthetic profiles with IRIS observations reveals that there are several areas, especially in the penumbra of the sunspot, where most of the observed MgII H & K profiles are very well reproduced. In addition, we find that supersonic hot downflows, present in our collection of models in the umbra, lead to synthetic profiles that agree well with the IRIS MgII H & K profiles, with the exception of the line core. We put forward and make available four semi-empirical model atmospheres. Two for the penumbra, reflecting the range of temperatures obtained for the chromosphere, one for umbral flashes, and a model representative of the quiet surroundings of a sunspot. These are available in electronic as well as in table formats.
- ID:
- ivo://CDS.VizieR/J/A+A/528/A113
- Title:
- Synthetic lines in the Sun
- Short Name:
- J/A+A/528/A113
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have computed synthetic spectra from a realistic 3D numerical simulation of the solar photosphere. We provide the spatially averaged spectra for selected lines that are commonly used on solar applications. These data can be used to calibrate Doppler velocity measurements in the solar photosphere. The calculations are carried out along the solar disk from heliocentric angle mu=1.0 to mu=0.3.
- ID:
- ivo://CDS.VizieR/J/ApJ/717/257
- Title:
- Synthetic spectra of dark stars
- Short Name:
- J/ApJ/717/257
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The first stars in the history of the Universe are likely to form in the dense central regions of {sim.to}10^5^-10^6^ M_{sun}_ cold dark matter halos at z{approx}10--50. The annihilation of dark matter particles in these environments may lead to the formation of so-called dark stars, which are predicted to be cooler, larger, more massive and potentially more long-lived than conventional population III stars. Here, we investigate the prospects of detecting high-redshift dark stars with the upcoming James Webb Space Telescope (JWST). We find that all dark stars with masses up to 10^3^ M_{sun}_ are intrinsically too faint to be detected by JWST at z above 6. However, by exploiting foreground galaxy clusters as gravitational telescopes, certain varieties of cool (T_eff_<=30000K) dark stars should be within reach at redshifts up to z{approx}10. If the lifetimes of dark stars are sufficiently long, many such objects may also congregate inside the first galaxies. We demonstrate that this could give rise to peculiar features in the integrated spectra of galaxies at high redshifts, provided that dark stars make up at least {sim.to}1% of the total stellar mass in such objects.
- ID:
- ivo://CDS.VizieR/J/MNRAS/412/1070
- Title:
- Synthetic supernova extinction curves
- Short Name:
- J/MNRAS/412/1070
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We apply the supernova (SN) extinction curves to reproduce the observed properties of SST J1604+4304 which is a young infrared (IR) galaxy at z~1. The SN extinction curves used in this work were obtained from models of unmixed ejecta of Type II supernovae for the Salpeter initial mass function with a mass range from 8 to 30M_{sun}_ or 8 to 40M_{sun}_. The effect of dust distributions on the attenuation of starlight is investigated by performing the {chi}^2^ fitting method against various dust distributions. These are the commonly used uniform dust screen, the clumpy dust screen and the internal dust geometry. We add to these geometries three scattering properties, namely, no scattering, isotropic scattering and forward-only scattering. Judging from the {chi}^2^ values, we find that the uniform screen models with any scattering property provide good approximations to the real dust geometry.
- ID:
- ivo://CDS.VizieR/J/A+A/512/A54
- Title:
- Teff and Fbol from Infrared Flux Method
- Short Name:
- J/A+A/512/A54
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Various effective temperature scales have been proposed over the years. Despite much work and the high internal precision usually achieved, systematic differences of order 100K (or more) among various scales are still present. We present an investigation based on the Infrared Flux Method aimed at assessing the source of such discrepancies and pin down their origin. We break the impasse among different scales by using a large set of solar twins, stars which are spectroscopically and photometrically identical to the Sun, to set the absolute zero point of the effective temperature scale to within few degrees. Our newly calibrated, accurate and precise temperature scale applies to dwarfs and subgiants, from super-solar metallicities to the most metal-poor stars currently known. At solar metallicities our results validate spectroscopic effective temperature scales, whereas for [Fe/H]<-2.5 our temperatures are roughly 100 K hotter than those determined from model fits to the Balmer lines and 200 K hotter than those obtained from the excitation equilibrium of Fe lines. Empirical bolometric corrections and useful relations linking photometric indices to effective temperatures and angular diameters have been derived. Our results take full advantage of the high accuracy reached in absolute calibration in recent years and are further validated by interferometric angular diameters and space based spectrophotometry over a wide range of effective temperatures and metallicities.
- ID:
- ivo://CDS.VizieR/J/ApJ/761/166
- Title:
- Terrestrial exoplanet atmospheres. I.
- Short Name:
- J/ApJ/761/166
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission, and thermal escape of O, H, C, N, and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets and choose three benchmark cases for atmospheres from reducing to oxidizing. The most interesting finding is that atomic hydrogen is always a more abundant reactive radical than the hydroxyl radical in anoxic atmospheres. Whether atomic hydrogen is the most important removal path for a molecule of interest also depends on the relevant reaction rates. We also find that volcanic carbon compounds (i.e., CH_4_ and CO_2_) are chemically long-lived and tend to be well mixed in both reducing and oxidizing atmospheres, and their dry deposition velocities to the surface control the atmospheric oxidation states. Furthermore, we revisit whether photochemically produced oxygen can cause false positives for detecting oxygenic photosynthesis, and find that in 1 bar CO_2_-rich atmospheres oxygen and ozone may build up to levels that have conventionally been accepted as signatures of life, if there is no surface emission of reducing gases. The atmospheric scenarios presented in this paper can serve as the benchmark atmospheres for quickly assessing the lifetime of trace gases in reducing, weakly oxidizing, and highly oxidizing atmospheres on terrestrial exoplanets for the exploration of possible biosignature gases.