- ID:
- ivo://CDS.VizieR/J/ApJS/224/2
- Title:
- K2 EPIC stellar properties for 138600 targets
- Short Name:
- J/ApJS/224/2
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The K2 Mission uses the Kepler spacecraft to obtain high-precision photometry over ~80 day campaigns in the ecliptic plane. The Ecliptic Plane Input Catalog (EPIC) provides coordinates, photometry, and kinematics based on a federation of all-sky catalogs to support target selection and target management for the K2 mission. We describe the construction of the EPIC, as well as modifications and shortcomings of the catalog. Kepler magnitudes (Kp) are shown to be accurate to ~0.1mag for the Kepler field, and the EPIC is typically complete to Kp~17 (Kp~19 for campaigns covered by Sloan Digital Sky Survey). We furthermore classify 138600 targets in Campaigns 1-8 (~88% of the full target sample) using colors, proper motions, spectroscopy, parallaxes, and galactic population synthesis models, with typical uncertainties for G-type stars of ~3% in Teff, ~0.3dex in logg~40% in radius, ~10% in mass, and ~40% in distance. Our results show that stars targeted by K2 are dominated by K-M dwarfs (~41% of all selected targets), F-G dwarfs (~36%), and K giants (~21%), consistent with key K2 science programs to search for transiting exoplanets and galactic archeology studies using oscillating red giants. However, we find significant variation of the fraction of cool dwarfs with galactic latitude, indicating a target selection bias due to interstellar reddening and increased contamination by giant stars near the galactic plane. We discuss possible systematic errors in the derived stellar properties, and differences with published classifications for K2 exoplanet host stars.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/835/173
- Title:
- Kepler asteroseismic LEGACY sample. II.
- Short Name:
- J/ApJ/835/173
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use asteroseismic data from the Kepler satellite to determine fundamental stellar properties of the 66 main-sequence targets observed for at least one full year by the mission. We distributed tens of individual oscillation frequencies extracted from the time series of each star among seven modeling teams who applied different methods to determine radii, masses, and ages for all stars in the sample. Comparisons among the different results reveal a good level of agreement in all stellar properties, which is remarkable considering the variety of codes, input physics, and analysis methods employed by the different teams. Average uncertainties are of the order of ~2% in radius, ~4% in mass, and ~10% in age, making this the best-characterized sample of main-sequence stars available to date. Our predicted initial abundances and mixing-length parameters are checked against inferences from chemical enrichment laws {Delta}Y/{Delta}Z and predictions from 3D atmospheric simulations. We test the accuracy of the determined stellar properties by comparing them to the Sun, angular diameter measurements, Gaia parallaxes, and binary evolution, finding excellent agreement in all cases and further confirming the robustness of asteroseismically determined physical parameters of stars when individual frequencies of oscillation are available. Baptised as the Kepler dwarfs LEGACY sample, these stars are the solar-like oscillators with the best asteroseismic properties available for at least another decade. All data used in this analysis and the resulting stellar parameters are made publicly available for the community.
- ID:
- ivo://CDS.VizieR/J/ApJ/827/50
- Title:
- Kepler faint red giants
- Short Name:
- J/ApJ/827/50
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Asteroseismology has proven to be an excellent tool to determine not only global stellar properties with good precision, but also to infer the stellar structure, dynamics, and evolution for a large sample of Kepler stars. Prior to the launch of the mission, the properties of Kepler targets were inferred from broadband photometry, leading to the Kepler Input Catalog (KIC). The KIC was later revised in the Kepler Star Properties Catalog, based on literature values and an asteroseismic analysis of stars that were unclassified in the KIC. Here, we present an asteroseismic analysis of 45400 stars that were classified as dwarfs in the Kepler Star Properties Catalog. We found that around 2% of the sample shows acoustic modes in the typical frequency range that put them in the red-giant category rather than the cool dwarf category. We analyze the asteroseismic properties of these stars, derive their surface gravities, masses, and radii, and present updated effective temperatures and distances. We show that the sample is significantly fainter than the previously known oscillating giants in the Kepler field, with the faintest stars reaching down to a Kepler magnitude of Kp~16. We demonstrate that 404 stars are at distances beyond 5kpc and that the stars are significantly less massive than for the original Kepler red-giant sample, consistent with a population of distant halo giants. A comparison with a galactic population model shows that up to 40 stars might be genuine halo giants, which would increase the number of known asteroseismic halo stars by a factor of 4. The detections presented here will provide a valuable sample for galactic archeology studies.
- ID:
- ivo://CDS.VizieR/J/MNRAS/457/2877
- Title:
- Kepler M dwarf stars revised properties
- Short Name:
- J/MNRAS/457/2877
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We classified the reddest (r-J>2.2) stars observed by the NASA Kepler mission into main-sequence dwarf or evolved giant stars and determined the properties of 4216 M dwarfs based on a comparison of available photometry with that of nearby calibrator stars, as well as available proper motions and spectra. We revised the properties of candidate transiting planets using the stellar parameters, high-resolution imaging to identify companion stars, and, in the case of binaries, fitting light curves to identify the likely planet host. In 49 of 54 systems, we validated the primary as the host star. We inferred the intrinsic distribution of M dwarf planets using the method of iterative Monte Carlo simulation. We compared several models of planet orbital geometry and clustering and found that one where planets are exponentially distributed and almost precisely coplanar best describes the distribution of multiplanet systems. We determined that Kepler M dwarfs host an average of 2.2+/-0.3 planets with radii of 1-4R_{Earth}_ and orbital periods of 1.5-180d. The radius distribution peaks at ~1.2R_{Earth}_ and is essentially zero at 4R_{Earth}_, although we identify three giant planet candidates other than the previously confirmed Kepler-45b. There is suggestive but not significant evidence that the radius distribution varies with orbital period. The distribution with logarithmic orbital period is flat except for a decline for orbits less than a few days. 12 candidate planets, including two Jupiter-size objects, experience an irradiance below the threshold level for a runaway greenhouse on an Earth-like planet and are thus in a 'habitable zone'.
- ID:
- ivo://CDS.VizieR/J/ApJ/774/L12
- Title:
- Kepler multiplanet systems analysis (Q1-Q8)
- Short Name:
- J/ApJ/774/L12
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Many Kepler multiplanet systems have planet pairs near low-order, mean-motion resonances. In addition, many Kepler multiplanet systems have planets with orbital periods less than a few days. With the exception of Kepler-42, however, there are no examples of systems with both short orbital periods and nearby companion planets while our statistical analysis predicts ~17 such pairs. For orbital periods of the inner planet that are less than three days, the minimum period ratio of adjacent planet pairs follows the rough constraint P=P_2_/P_1_>~2.3(P_1_/day)^-2/3^ (equation (1)). This absence is not due to a lack of planets with short orbital periods. We also show a statistically significant excess of small, single-candidate systems with orbital periods below three days over the number of multiple candidate systems with similar periods--perhaps a small-planet counterpart to the hot Jupiters.
- ID:
- ivo://CDS.VizieR/J/ApJ/813/130
- Title:
- Kepler multiple transiting planet systems
- Short Name:
- J/ApJ/813/130
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Kepler mission provides a wealth of multiple transiting planet systems (MTPSs). The formation and evolution of multi-planet systems are likely to be influenced by companion stars given the abundance of multiple stellar systems. We study the influence of stellar companions by measuring the stellar multiplicity rate of MTPSs. We select 138 bright (K_P_<13.5) Kepler MTPSs and search for stellar companions with adaptive optics (AO) imaging data and archival radial velocity data. We obtain new AO images for 73 MTPSs. Other MTPSs in the sample have archival AO imaging data from the Kepler Community Follow-up Observation Program. From these imaging data, we detect 42 stellar companions around 35 host stars. For stellar separation 1 AU<a<100 AU, the stellar multiplicity rate is 5.2+/-5.0% for MTPSs, which is 2.8{sigma} lower than 21.1+/-2.8% for the control sample, i.e., the field stars in the solar neighborhood. We identify two origins for the deficit of stellar companions within 100 AU of MTPSs: (1) a suppressive planet formation and (2) the disruption of orbital coplanarity due to stellar companions. To distinguish between the two origins, we compare the stellar multiplicity rates of MTPSs and single transiting planet systems (STPSs). However, current data are not sufficient for this purpose. For 100 AU<a<2000 AU, the stellar multiplicity rates are comparable for MTPSs (8.0+/-4.0%), STPSs (6.4+/-5.8%), and the control sample (12.5+/-2.8%).
- ID:
- ivo://CDS.VizieR/J/other/RAA/17.76
- Title:
- K giant stars along Sagittarius streams
- Short Name:
- J/other/RAA/17.7
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Large Sky-Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 3 provided 341 691 K giant stars with stellar parameters. Based on the models of Law & Majewski (2010ApJ...714..229L), we identified 252 K giant stars in the leading stream associated with the Sagittarius (Sgr) dwarf galaxy. We obtained 132 K giant stars belonging to the trailing arm of Sgr using the model of Belokurov et al. We studied the metallicity distribution of member stars along the streams and found a flat gradient in the first wrap of the leading stream, -(0.88+/-0.3)x10^-3^dex/deg in the second wrap of the leading stream and -(1.2+/-0.3)x10^-3^dex/deg in the first wrap of the trailing stream. Moreover, we obtained a combined metallicity gradient with our sample and data from the literature. We also analyzed the properties of an overdensity, which is located in the leading stream of the Sgr.
- ID:
- ivo://CDS.VizieR/J/MNRAS/445/2758
- Title:
- KIC giants Bayesian distances and extinctions
- Short Name:
- J/MNRAS/445/2758
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a first determination of distances and extinctions for individual stars in the first release of the APOKASC catalogue, built from the joint efforts of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and the Kepler Asteroseismic Science Consortium (KASC). Our method takes into account the spectroscopic constraints derived from the APOGEE Stellar Parameters and Chemical Abundances Pipeline, together with the asteroseismic parameters from KASC. These parameters are then employed to estimate intrinsic stellar properties, including absolute magnitudes, using the Bayesian tool param. We then find the distance and extinction that best fit the observed photometry in Sloan Digital Sky Survey (SDSS), 2MASS, and WISE passbands. The first 1989 giants targetted by APOKASC are found at typical distances between 0.5 and 5kpc, with individual uncertainties of just ~1.8%. Our extinction estimates are systematically smaller than provided in the Kepler Input Catalogue and by the Schlegel et al. maps. Distances to individual stars in the NGC 6791 and NGC 6819 star clusters agree to within their credible intervals. Comparison with the APOGEE red clump and SAGA catalogues provide another useful check, exhibiting agreement with our measurements to within a few per cent. Overall, present methods seem to provide excellent distance and extinction determinations for the bulk of the APOKASC sample. Approximately one third of the stars present broad or multiple-peaked probability density functions and hence increased uncertainties. Uncertainties are expected to be reduced in future releases of the catalogue, when a larger fraction of the stars will have seismically determined evolutionary status classifications.
- ID:
- ivo://CDS.VizieR/J/MNRAS/366/1096
- Title:
- Kinematic distance ambiguity
- Short Name:
- J/MNRAS/366/1096
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the use of HI data to resolve the near/far ambiguity in kinematic distances of massive young stellar object (MYSO) candidates. Kinematic distances were obtained from ^13^CO 1-0 (and N_2_H^+^) spectral-line observations with the Mopra Telescope towards 94 candidates selected from the Red MSX Source (RMS) survey in the fourth Galactic quadrant (282{deg}<l<350{deg}). HI data from the Southern Galactic Plane Survey (SGPS) were used in conjunction with the HI self-absorption (SA) technique to determine the near or far distance. We resolved the kinematic distance ambiguity to 70 per cent of the sources. We can also simultaneously solve for any multiple line-of-sight component sources. We discuss the advantages and disadvantages of this technique in comparison with other methods, and also perform confidence checks on the reliability of using the HI SA technique.
- ID:
- ivo://CDS.VizieR/J/A+A/658/A22
- Title:
- Kinematic properties of white dwarfs
- Short Name:
- J/A+A/658/A22
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Kinematic and chemical tagging of stellar populations have both revealed much information on the past and recent history of the Milky Way, including its formation history, merger events, and mixing of populations across the Galactic disk and halo. We present the first detailed 3D kinematic analysis of a sample of 3133 white dwarfs that used Gaia astrometry plus radial velocities, which were measured either by Gaia or by ground-based spectroscopic observations. The sample includes either isolated white dwarfs that have direct radial velocity measurements, or white dwarfs that belong to common proper motion pairs that contain nondegenerate companions with available radial velocities. A subset of common proper motion pairs also have metal abundances that have been measured by large-scale spectroscopic surveys or by our own follow-up observations. We used the white dwarfs as astrophysical clocks by determining their masses and total ages through interpolation with dedicated evolutionary models. We also used the nondegenerate companions in common proper motions to chemically tag the population. Combining accurate radial velocities with Gaia astrometry and proper motions, we derived the velocity components of our sample in the Galactic rest frame and their Galactic orbital parameters. The sample is mostly located within ~300 pc from the Sun. It predominantly contains (90-95%) thin-disk stars with almost circular Galactic orbits, while the remaining 5-10% of stars have more eccentric trajectories and belong to the thick disk. We identified seven isolated white dwarfs and two common proper motion pairs as halo members. We determined the age - velocity dispersion relation for the thin-disk members, which agrees with previous results that were achieved from different white dwarf samples without published radial velocities. The age - velocity dispersion relation shows signatures of dynamical heating and saturation after 4-6 Gyr. We observed a mild anticorrelation between [Fe/H] and the radial component of the average velocity dispersion, showing that dynamical mixing of populations takes place in the Galactic disk, as was detected through the analysis of other samples of FGK stars. We have shown that a white dwarf sample with accurate 3D kinematics and well-measured chemical compositions enables a wider understanding of their population in the solar neighborhood and its connection with the Galactic chemodynamics. The legacy of existing spectroscopic surveys will be boosted by the availability of upcoming larger samples of white dwarfs and common proper motion pairs with more uniform high-quality data.