- ID:
- ivo://CDS.VizieR/J/ApJ/819/2
- Title:
- APOGEE kinematics. I. Galactic bulge overview
- Short Name:
- J/ApJ/819/2
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the stellar kinematics across the Galactic bulge and into the disk at positive longitudes from the SDSS-III APOGEE spectroscopic survey of the Milky Way. APOGEE includes extensive coverage of the stellar populations of the bulge along the midplane and near-plane regions. From these data, we have produced kinematic maps of 10000 stars across longitudes of 0{deg}<l<65{deg}, and primarily across latitudes of |b|<5{deg} in the bulge region. The APOGEE data reveal that the bulge is cylindrically rotating across all latitudes and is kinematically hottest at the very center of the bulge, with the smallest gradients in both kinematic and chemical space inside the innermost region (|l,b|)<(5{deg},5{deg}). The results from APOGEE show good agreement with data from other surveys at higher latitudes and a remarkable similarity to the rotation and dispersion maps of barred galaxies viewed edge-on. The thin bar that is reported to be present in the inner disk within a narrow latitude range of |b|<2{deg} appears to have a corresponding signature in [Fe/H] and [{alpha}/Fe]. Stars with [Fe/H]>-0.5 have dispersion and rotation profiles that are similar to that of N-body models of boxy/peanut bulges. There is a smooth kinematic transition from the thin bar and boxy bulge (|l,b|)<(15{deg},12{deg}) out to the disk for stars with [Fe/H]>-1.0, and the chemodynamics across (l,b) suggests that the stars in the inner Galaxy with [Fe/H]>-1.0 originate in the disk.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/460/3179
- Title:
- APOGEE stars distance and extinction
- Short Name:
- J/MNRAS/460/3179
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using a Bayesian technology, we derived distances and extinctions for over 100000 red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey by taking into account spectroscopic constraints from the APOGEE stellar parameters and photometric constraints from Two Micron All-Sky Survey, as well as a prior knowledge on the Milky Way. Derived distances are compared with those from four other independent methods, the Hipparcos parallaxes, star clusters, APOGEE red clump stars, and asteroseismic distances from APOKASC and Stromgren survey for Asteroseismology and Galactic Archaeology catalogues. These comparisons covers four orders of magnitude in the distance scale from 0.02 to 20kpc. The results show that our distances agree very well with those from other methods: the mean relative difference between our Bayesian distances and those derived from other methods ranges from -4.2 per cent to +3.6 per cent, and the dispersion ranges from 15 per cent to 25 per cent. The extinctions towards all stars are also derived and compared with those from several other independent methods: the Rayleigh-Jeans Colour Excess (RJCE) method, Gonzalez's 2D extinction map, as well as 3D extinction maps and models. The comparisons reveal that, overall, estimated extinctions agree very well, but RJCE tends to overestimate extinctions for cool stars and objects with low logg.
- ID:
- ivo://CDS.VizieR/J/AJ/155/240
- Title:
- A spectroscopic survey of field RHB stars
- Short Name:
- J/AJ/155/240
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A metallicity, chemical composition, and kinematic survey has been conducted for a sample of 340 candidate field red horizontal-branch (RHB) stars. Spectra with high resolution and high signal-to-noise ratio were gathered with the McDonald Observatory 2.7 m Tull and the Hobby-Eberly Telescope echelle spectrographs, and were used to determine effective temperatures, surface gravities, microturbulent velocities, [Fe/H] metallicities, and abundance ratios [X/Fe] for seven {alpha} and Fe-group species. The derived temperatures and gravities confirm that at least half of the candidates are true RHB stars, with (average) parameters T_eff_~5000 K and log g~2.5. From the {alpha} abundances alone, the thin and thick Galactic populations are apparent in our sample. Space motions for 90% of the program stars were computed from Hipparcos and Gaia parallaxes and proper motions. Correlations between chemical compositions and Galactic kinematics clearly indicate the existence of both thin-disk and thick-disk RHB stars.
- ID:
- ivo://CDS.VizieR/J/A+A/653/A98
- Title:
- asPIC1.1 catalogue
- Short Name:
- J/A+A/653/A98
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- The ESA PLAnetary Transits and Oscillations of stars (PLATO) mission will search for terrestrial planets in the habitable zone of solar-like stars. Because of telemetry limitations PLATO targets need to be pre-selected. In this paper we present an all sky catalog that will be fundamental to select the best PLATO fields and the most promising target stars, derive their fundamental parameters, analyze the instrumental performances and then plan and optimize follow-up observations. This catalog also represents a valuable resource for the general definition of stellar samples optimized for the search of transiting planets. We used Gaia Data Release 2 (DR2) astrometry and photometry and 3D maps of the local interstellar medium to isolate FGK (V<=13) and M(V<=16) dwarfs and subgiant stars. We present the first public release of the all sky PLATO Input Catalog (asPIC1.1) containing a total of 2675539 stars among which 2378177 FGK dwarfs and subgiants and 297362 M dwarfs. The median distance in our sample is 428pc for FGK stars and 146 pc for M dwarfs, respectively. We derived the reddening of our targets and developed an algorithm to estimate stellar fundamental parameters (Teff, radius, mass) from astrometric and photometric measurements. We show that our overall (internal+external) uncertainties on the stellar parameters determination is ~230K (4%) for the effective temperatures, ~0.1R_{sun}_ (9%) for the stellar radii and ~0.1M_{sun}_ (11%) for the stellar mass. We release a special target list containing all known planet hosts cross-matched with our catalog.
- ID:
- ivo://CDS.VizieR/J/AJ/158/227
- Title:
- Asteroseismic parameters of RGB stars
- Short Name:
- J/AJ/158/227
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Every Sun-like star will eventually evolve into a red giant, a transition which can profoundly affect the evolution of a surrounding planetary system. The timescale of dynamical planet evolution and orbital decay has important implications for planetary habitability, as well as post-main-sequence star and planet interaction, evolution, and internal structure. Here, we investigate these effects by estimating planet occurrence around 2476 low-luminosity red giant branch (LLRGB) stars observed by the NASA K2 mission. We measure stellar masses and radii using asteroseismology, with median random uncertainties of 3.7% in mass and 2.2% in radius. We compare this planet population to the known population of planets around dwarf Sun-like stars, accounting for detection efficiency differences between the stellar populations. We find that 0.49%+/-0.28% of LLRGB stars host planets larger than Jupiter with orbital periods less than 10 days, tentatively higher than main-sequence stars hosting similar planets (0.15%+/-0.06%). Our results suggest that the effects of stellar evolution on the occurrence of close-in planets larger than Jupiter are not significant until stars have begun ascending substantially up the red giant branch (>~5-6 R_{sun}_).
- ID:
- ivo://CDS.VizieR/J/A+A/630/A150
- Title:
- Astrometric data for 211 GAPN sample
- Short Name:
- J/A+A/630/A150
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have compiled a catalogue of central stars of planetary nebulae (CSPN) with reliable distances and positions obtained from Gaia Data Release 2 (DR2) astrometry. Distances derived from parallaxes allow us to analyse the galactic distribution and estimate other parameters such as sizes, kinematical ages, bolometric magnitudes, and luminosities. Our objective is to analyse the information regarding distances together with other available literature data about photometric properties, nebular kinematics, and stellar effective temperatures to throw new light on this rapid and rather unknown evolutionary phase. We seek to understand how Gaia distances compare with other indirect methods commonly used and, in particular, with those derived from non-local thermodynamic equilibrium (non-LTE) models; how many planetary nebulae (PNe) populate the Galaxy; and how are they spatially distributed. We also aim to comprehend their intrinsic luminosities, range of physical sizes of the nebulae; how to derive the values for their kinematical ages; and whether those ages are compatible with those derived from evolutionary models. We considered all PNe listed in catalogues from different authors and in Hong Kong/AAO/Strasbourg/H{alpha} (HASH) database. By X-matching their positions with Gaia DR2 astrometry we were able to identify 1571 objects in Gaia second archive, for which we assumed distances calculated upon a Bayesian statistical approach. From those objects, we selected a sample of PNe with good quality parallax measurements and distance derivations, we which refer to as our Golden Astrometry PNe sample (GAPN), and obtained literature values of their apparent sizes, radial and expansion velocities, visual magnitudes, interstellar reddening, and effective temperatures. We found that the distances derived from DR2 parallaxes compare well with previous astrometric derivations of the United States Naval Observatory and Hubble Space Telescope, but that distances inferred from non-LTE model fitting are overestimated and need to be carefully reviewed. From literature apparent sizes, we calculated the physical radii for a subsample of nebulae that we used to derive the so-called kinematical ages, taking into account literature expansion velocities. Luminosities calculated with DR2 distances were combined with literature central stars Teff values in a Hertzsprung-Russell (HR) diagram to infer information on the evolutionary status of the nebulae. We compared their positions with updated evolutionary tracks finding a rather consistent picture. Stars with the smallest associated nebular radii are located in the flat luminosity region of the HR diagram, while those with the largest radii correspond to objects in a later stage, getting dimmer on their way to become a white dwarf. Finally, we commented on the completeness of our catalogue and calculated an approximate value for the total number of PNe in the Galaxy.
- ID:
- ivo://CDS.VizieR/J/AJ/145/136
- Title:
- Astrometry and photometry of nearby white dwarfs
- Short Name:
- J/AJ/145/136
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the preliminary results of a survey aimed at significantly increasing the range and completeness of the local census of spectroscopically confirmed white dwarfs. The current census of nearby white dwarfs is reasonably complete only to about 20pc of the Sun, a volume that includes around 130 white dwarfs, a sample too small for detailed statistical analyses. This census is largely based on follow-up investigations of stars with very large proper motions. We describe here the basis of a method that will lead to a catalog of white dwarfs within 40pc of the Sun and north of the celestial equator, thus increasing by a factor of eight the extent of the northern sky census. White dwarf candidates are identified from the SUPERBLINK proper motion database, allowing us to investigate stars down to a proper motion limit {mu}>40mas/yr, while minimizing the kinematic bias for nearby objects. The selection criteria and distance estimates are based on a combination of color-magnitude and reduced proper motion diagrams. Our follow-up spectroscopic observation campaign has so far uncovered 193 new white dwarfs, among which we identify 127 DA (including 9 DA+dM and 4 magnetic), 1 DB, 56 DC, 3 DQ, and 6 DZ stars. We perform a spectroscopic analysis on a subsample of 84 DAs, and provide their atmospheric parameters. In particular, we identify 11 new white dwarfs with spectroscopic distances within 25pc of the Sun, including five candidates to the D<20pc subset.
- ID:
- ivo://CDS.VizieR/J/AJ/156/61
- Title:
- A study of the H{alpha} variability of Be stars
- Short Name:
- J/AJ/156/61
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper presents the results of 4 years of high-resolution spectral observations of 69 emission-line stars, 54 of them being newly discovered sources. We classified the stars on the basis of their position in the two-color IR diagram and some additional criteria: shape and width of the H{alpha} profile, presence of He lines, proper motion and parallax, membership to open cluster and associations. Sixty of our targets turned out to be Be stars. We also found four late giants, four pre-MS stars, and one late dwarf. The H{alpha} emission profiles of our Be stars range from single peaked to typical shell profiles that can also be highly asymmetric or single-peaked profiles with a narrow absorption core. The emission profiles appear almost constant with time or highly variable in intensity and in their V/R ratio. The detected long-term variability of the H{alpha} emission is important for investigating the on/off switch phenomenon of Be stars. Our study led to an increase of the number of the emission-line stars of 16 open clusters.
- ID:
- ivo://CDS.VizieR/J/ApJ/784/154
- Title:
- A survey for H{alpha} pulsar bow shocks
- Short Name:
- J/ApJ/784/154
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on a survey for H{alpha} bow shock emission around nearby {gamma}-detected energetic pulsars. This survey adds three Balmer-dominated neutron star bow shocks to the six previously confirmed examples. In addition to the shock around Fermi pulsar PSR J1741-2054, we now report H{alpha} structures around two additional {gamma}-ray pulsars, PSR J2030+4415 and PSR J1509-5850. These are the first known examples of H{alpha} nebulae with pre-ionization halos. With new measurements, we show that a simple analytic model can account for the angular size and flux of the bow shocks' apices. The latter, in particular, provides a new pulsar probe and indicates large moments of inertia and smaller distances than previously assumed in several cases. In particular, we show that the re-measured PSR J0437-4715 shock flux implies I=(1.7+/-0.2)x10^45^/(f_H I_sin i)g cm^2^. We also derive a distance d~0.72 kpc for the {gamma}-ray only pulsar PSR J2030+4415 and revised distances for PSRs J1959+2048 (1.4 kpc) and J2555+6535 (~1 kpc), smaller than the conventional DM-estimated values. Finally, we report upper limits for 94 additional LAT pulsars. An estimate of the survey sensitivity indicates that for a warm neutral medium filling factor {phi}_WNM_~0.3 there should be a total of approximately nine H{alpha} bow shocks in our LAT-targeted survey; given that seven such objects are now known, a much larger {phi}_WNM_ seems problematic.
- ID:
- ivo://CDS.VizieR/J/A+A/579/A91
- Title:
- ATLASGAL inner Galaxy massive cold dust clumps
- Short Name:
- J/A+A/579/A91
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The formation of high mass stars and clusters occurs in giant molecular clouds. Objects in evolved stages of massive star formation such as protostars, hot molecular cores, and ultracompact HII regions have been studied in more detail than earlier, colder objects. Further progress thus requires the analysis of the time before massive protostellar objects can be probed by their infrared emission. With this in mind, the APEX Telescope Large Area Survey of the whole inner Galactic plane at 870{mu}m (ATLASGAL) has been carried out to provide a global view of cold dust and star formation at submillimetre wavelengths. We derive kinematic distances to a large sample of massive cold dust clumps from their measured line velocities. We estimate masses and sizes of ATLASGAL sources, for which the kinematic distance ambiguity is resolved. The ATLASGAL sample is divided into groups of sources, which are located close together, mostly within a radius of 2pc, and have velocities in a similar range with a median velocity dispersion of ~1km/s. We use NH_3_, N_2_H^+^, and CS velocities to calculate near and far kinematic distances to those groups. We obtain 296 groups of ATLASGAL sources in the first quadrant and 393 groups in the fourth quadrant, which are coherent in space and velocity. We analyse HI self-absorption and HI absorption to resolve the kinematic distance ambiguity to 689 complexes of submm clumps. They are associated with ^12^CO emission probing large-scale structure and ^13^CO (1-0) line as well as the 870{mu}m dust continuum on a smaller scale. We obtain a scale height of ~28+/-2pc and displacement below the Galactic midplane of ~-7+/-1pc. Within distances from 2 to 18kpc ATLASGAL clumps have a broad range of gas masses with a median of 1050M_{sun}_ as well as a wide distribution of radii with a median of 0.4pc. Their distribution in galactocentric radii is correlated with spiral arms. Using a statistically significant ATLASGAL sample we derive a power-law exponent of -2.2+/-0.1 of the clump mass function. This is consistent with the slope derived for clusters and with that of the stellar initial mass function. Examining the power-law index for different galactocentric distances and various source samples shows that it is independent of environment and evolutionary phase. Fitting the mass-size relationship by a power law gives a slope of 1.76+/-0.01 for cold sources such as IRDCs and warm clumps associated with HII regions.