New CCD photometric observations of the chromospherically active binary XY Ursae Majoris (XY UMa) were obtained every year since 2006. The light curves obtained in the late Spring of 2006 show obvious variations on a short timescale, while the light curves obtained in 2008 December do not. But both sets of light curves are markedly asymmetric, and were analyzed using the 2003 version of the Wilson-Devinney code with spot model. New absolute physical parameters are obtained.
Rapid advancements in light-curve and radial-velocity curve modelling, as well as improvements in the accuracy of observations, allow more stringent tests of the theory of stellar evolution. Binaries with rapid apsidal advance are particularly useful in this respect since the internal structure of the stars can also be tested. Thanks to its long and rich observational history and rapid apsidal motion, the massive eclipsing binary Y Cyg represents one of the cornerstones of critical tests of stellar evolutionary theory for massive stars. Nevertheless, the determination of the basic physical properties is less accurate than it could be given the existing number of spectral and photometric observations. Our goal is to analyse all these data simultaneously with the new dedicated series of our own spectral and photometric observations from observatories widely separated in longitude.
The FU Orionis type of variable star (FUor), V1057 Cygni, underwent a nova-like outburst in 1969-1970. Among the FUors, V1057 Cyg is notable for having the most dramatic post-maximum decrease in brightness. Thus, photometric monitoring of this object is important for interpretations of the cause of this event. Here, we study the behaviour of V1057 Cyg over the last 25 years on the basis of our optical and infrared observations. The optical and near-infrared observations of V1057 Cyg started in 1974, and we present all our data (up to the end of 2011), including 1085 and 167 nights of optical and infrared photometry, respectively. The UBVRIJHKLM light curves for 1985-2011 show that despite the increased photometric activity, after a rapid decrease in brightness in the mid-1990s, the average level of brightness remained practically constant. After the object becomes fainter than V~11.5mag, a swerve appears in the track of the colour-magnitude diagram. The light variability shows a different periodicity in different spectral regions. We have discovered a period of 1631+/-60d in the BVR bands (1995-2011) and 523+/-40d in the RIJHK bands (2002-2011) with amplitudes of 0.5-0.3mag. The 523-d period is presumably correlated with the changes in the radial velocity of an emission component in LiI. We conclude that the observed properties of the FUor star V1057 Cyg are in accordance with current models of FUors involving binary or multiple systems.
Table 4 lists photometric data for Young Massive Star Clusters identified in a sample of 21 nearby galaxies. The photometric data have been corrected for Galactic foreground extinction. Each cluster is identified by the abbreviated NGC number of its host galaxy and an object number: nxxx-yyy is object number yyy in the galaxy NGC xxx. Effective cluster radii have been obtained by modeling the cluster images as MOFFAT15 functions convolved with the point-spread function measured on the CCD images.
The HII complex N44 in the Large Magellanic Cloud (LMC) provides an excellent site to perform a detailed study of star formation in a mild starburst, as it hosts three regions of star formation at different evolutionary stages, and it is not as complicated and confusing as the 30 Doradus giant HII region. We have obtained Spitzer Space Telescope observations and complementary ground-based 4m uBVIJK observations of N44 to identify candidate massive young stellar objects (YSOs). We further classify the YSOs into Types I, II, and III, according to their spectral energy distributions (SEDs). In our sample of 60 YSO candidates, ~65% of them are resolved into multiple components or extended sources in high-resolution ground-based images.
We present a photometric study of I-band variability in the young association Cepheus OB3b. The study is sensitive to periodic variability on time-scales of less than a day, to more than 20d. After rejection of contaminating objects using V, I, R and narrow-band H{alpha} photometry, we find 475 objects with measured rotation periods, which are very likely pre-main-sequence members of the Cep OB3b star-forming region.
We present the results of MMT observations of young stars for our study of protoplanetary disks at ages 1-10Myr in two young clusters located in the Cepheus OB2 region: Trumpler 37 (embedded in the HII region IC 1396) and NGC 7160. Using low-resolution optical spectra from the Hectospec multifiber spectrograph, we have tripled the number of known low-mass cluster members, identifying 130 new members in Tr 37 and 30 in NGC 7160. We use indicators of youth (Li absorption at 6707{AA}) and accretion/chromospheric activity (H{alpha} emission) to identify and classify the low-mass cluster members. We derive spectral types for all the low-mass candidates and calculate the individual extinctions and the average over the clusters.
20yr obs. of the spectroscopic binary EC 20117-4014
Short Name:
J/ApJ/859/145
Date:
21 Oct 2021
Publisher:
CDS
Description:
Among the competing evolution theories for subdwarf-B (sdB) stars is the binary evolution scenario. EC 20117-4014 (=V4640 Sgr) is a spectroscopic binary system consisting of a pulsating sdB star and a late F main-sequence companion; however, the period and the orbit semimajor axes have not been precisely determined. This paper presents orbital characteristics of the EC 20117-4014 binary system using 20 years of photometric data. Periodic observed minus calculated (O-C) variations were detected in the two highest-amplitude pulsations identified in the EC 20117-4014 power spectrum, indicating the binary system's precise orbital period (P=792.3d) and the light-travel-time amplitude (A=468.9s). This binary shows no significant orbital eccentricity, and the upper limit of the eccentricity is 0.025 (using 3{sigma} as an upper limit). This upper limit of the eccentricity is the lowest among all wide sdB binaries with known orbital parameters. This analysis indicated that the sdB is likely to have lost its hydrogen envelope through stable Roche lobe overflow, thus supporting hypotheses for the origin of sdB stars. In addition to those results, the underlying pulsation period change obtained from the photometric data was dP/dt=5.4(+/-0.7)x10^-14^d.d^-1^, which shows that the sdB is just before the end of the core helium-burning phase.
We present our photometric monitoring of a flat spectrum radio quasar 3C 454.3 at Yunnan observatories from 2006 to 2011. We find that the optical color of 3C 454.3 shows an obvious redder-when-brighter trend, which reaches a saturation stage when the source is brighter than 15.15mag at V band. We perform a simulation with multiple values of disk luminosity and spectral index to reproduce the magnitude-color diagram. The results show that the contamination caused by the disk radiation alone is difficult to produce the observed color variability. The variability properties during the outburst in 2009 December are also compared with {gamma}-ray data derived from the Fermi {gamma}-ray space telescope. The flux variation of these two bands follows a linear relation with F_{gamma}_{propto}F_R_^1.14+/-0.07^, which provides observational evidence for the external Compton process in 3C 454.3. Meanwhile, this flux correlation indicates that electron injection is the main mechanism for the variability origin. We also explore the variation of the flux ratio F{gamma}/FR and the detailed structures in the light curves, and discuss some possible origins for the detailed variability behaviors.
The Magellanic Bridge is the nearest low-metallicity, tidally stripped environment, offering a unique high-resolution view of physical conditions in merging and forming galaxies. In this paper, we present an analysis of candidate massive young stellar objects (YSOs), i.e., in situ, current massive star formation (MSF) in the Bridge using Spitzer mid-IR and complementary optical and near-IR photometry. While we definitely find YSOs in the Bridge, the most massive are ~10 M_{sun}_<<45 M_{sun}_ found in the LMC. The intensity of MSF in the Bridge also appears to be decreasing, as the most massive YSOs are less massive than those formed in the past. To investigate environmental effects on MSF, we have compared properties of massive YSOs in the Bridge to those in the LMC. First, YSOs in the Bridge are apparently less embedded than in the LMC: 81% of Bridge YSOs show optical counterparts, compared to only 56% of LMC sources with the same range of mass, circumstellar dust mass, and line-of-sight extinction. Circumstellar envelopes are evidently more porous or clumpy in the Bridge's low-metallicity environment. Second, we have used whole samples of YSOs in the LMC and the Bridge to estimate the probability of finding YSOs at a given H I column density, N(H I). We found that the LMC has ~3xhigher probability than the Bridge for N(H I)>12x10^20^/cm^2^, but the trend reverses at lower N(H I). Investigating whether this lower efficiency relative to H I is due to less efficient molecular cloud formation or to less efficient cloud collapse, or to both, will require sensitive molecular gas observations.