- ID:
- ivo://CDS.VizieR/J/AJ/127/2723
- Title:
- Abundances of 3 supergiants in Sextans A
- Short Name:
- J/AJ/127/2723
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the abundance analyses of three isolated A-type supergiant stars in the dwarf irregular galaxy Sextans A (=DDO 75) from high-resolution spectra obtained with the Ultraviolet-Visual Echelle Spectrograph (UVES) on the Kueyen telescope (UT2) of the ESO Very Large Telescope (VLT). Detailed model atmosphere analyses have been used to determine the stellar atmospheric parameters and the elemental abundances of the stars.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/368/247
- Title:
- Abundances of 6 suspected CP stars
- Short Name:
- J/MNRAS/368/247
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The abundance pattern of six stars classified as suspected chemically peculiar in the General Catalogue of Ap and Am stars (<III/162>) by Renson has been derived to ascertain the real nature of these objects. Spectroscopic observations in the range {lambda}{lambda}4800-5600{AA} have been carried out at the stellar station of the INAF Catania Astrophysical Observatory. Among the studied stars, for only three of them we confirmed their peculiarity, HD 155102 being a silicon star, HD 159082 a mercury-manganese star and HD 162132 a moderate metallic A-type star. The other three objects have chemical abundances not so different from the standard values derived in the literature for A-type stars and, furthermore, they do not show light variability. Hence, we suggest that they could be ruled out from Renson's catalogue.
- ID:
- ivo://CDS.VizieR/J/ApJ/838/44
- Title:
- Abundances of the brightest member of Tuc III
- Short Name:
- J/ApJ/838/44
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Chemically peculiar stars in dwarf galaxies provide a window for exploring the birth environment of stars with varying chemical enrichment. We present a chemical abundance analysis of the brightest star in the newly discovered ultra-faint dwarf galaxy candidate TucanaIII. Because it is particularly bright for a star in an ultra-faint Milky Way (MW) satellite, we are able to measure the abundance of 28 elements, including 13 neutron-capture species. This star, DESJ235532.66-593114.9 (DES J235532), shows a mild enhancement in neutron-capture elements associated with the r-process and can be classified as an r-I star. DES J235532 is the first r-I star to be discovered in an ultra-faint satellite, and Tuc III is the second extremely low-luminosity system found to contain r-process enriched material, after Reticulum II. Comparison of the abundance pattern of DES J235532 with r-I and r-II stars found in other dwarf galaxies and in the MW halo suggests a common astrophysical origin for the neutron-capture elements seen in all r-process enhanced stars. We explore both internal and external scenarios for the r-process enrichment of Tuc III and show that with abundance patterns for additional stars, it should be possible to distinguish between them.
- ID:
- ivo://CDS.VizieR/J/AJ/144/35
- Title:
- Abundances of the eclipsing binary ZZ Boo
- Short Name:
- J/AJ/144/35
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigated ZZ Boo using a high-resolution (R=80000) spectrum obtained at the BOES echelle spectrograph attached to a 1.8m telescope at the Bohuynsan observatory in Korea. The atmospheric parameters of the components were found using the published photometrical observations and the abundance analysis of iron lines: the flux ratio of the components F_A_/F_B_=1.12+/-0.15, the effective temperatures of the components T_eff_=6860+/-20K and 6930+/-20K, the surface gravities log g=3.72+/-0.10 and 3.84+/-0.10, the metallicities [Fe/H]=-0.10+/-0.08 and -0.03+/-0.10, and the projected rotation velocities vsin i=11.9+/-0.4km/s and 19.3+/-0.8km/s for the primary and secondary components, respectively. The pointed errors are the formal errors of the methods used; the systematic errors of the temperatures, gravities, metallicities, and projected rotational velocities can be as high as 250-300K, 0.3dex, 0.15dex, and 4km/s, respectively. The abundances of 24 and 22 chemical elements were determined in the atmospheres of the components. The abundance pattern of the primary component shows the solar or slightly undersolar abundances of all elements. CNO abundances are close to solar values. The abundance pattern of this component resembles those of {lambda} Boo type stars. The abundances of light elements, except oxygen, in the atmosphere of the secondary component are practically solar. The abundances of barium and two detected lanthanides are close to the solar values; the overabundance of oxygen is 0.9dex. The abundances of two components are evidently different. The comparison of relative abundances with the condensation temperatures and second ionization potentials of the elements confirms the difference in abundance patterns and allows discussion of the different accretion scenarios for two components of this binary system.
- ID:
- ivo://CDS.VizieR/J/ApJ/723/658
- Title:
- Abundances of the halo PN BoBn 1
- Short Name:
- J/ApJ/723/658
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have performed a comprehensive chemical abundance analysis of the extremely metal-poor ([Ar/H]<-2) halo planetary nebula (PN) BoBn 1 based on International Ultraviolet Explorer archive data, Subaru/High-Dispersion Spectrograph spectra, VLT/UVES archive data, and Spitzer/IRS spectra. We have detected over 600 lines in total and calculated ionic and elemental abundances of 13 elements using detected optical recombination lines (ORLs) and collisionally excited lines (CELs). The estimations of C, N, O, and Ne abundances from the ORLs and Kr, Xe, and Ba from the CELs are done the first for this nebula, empirically and theoretically. We have detected five fluorine and several slow neutron capture elements (the s-process). The amounts of [F/H], [Kr/H], and [Xe/H] suggest that BoBn 1 is the most F-rich among F-detected PNe and is a heavy s-process element rich PN. We have confirmed dust in the nebula that is composed of amorphous carbon and polycyclic aromatic hydrocarbons with a total mass of 5.8x10^-6^M_{sun}_. The photoionization models built with non-LTE theoretical stellar atmospheres indicate that the progenitor was a 1-1.5M_{sun}_ star that would evolve into a white dwarf with an ~0.62M_{sun}_ core mass and ~0.09M_{sun}_ ionized nebula. We have measured a heliocentric radial velocity of +191.6+/-1.3km/s and expansion velocity 2V_exp_ of 40.5+/-3.3km/s from an average over 300 lines.
- ID:
- ivo://CDS.VizieR/J/ApJ/830/93
- Title:
- Abundances of the Ret II brightest red giant members
- Short Name:
- J/ApJ/830/93
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present chemical abundances derived from high-resolution Magellan/Magellan Inamori Kyocera Echelle spectra of the nine brightest known red giant members of the ultra-faint dwarf galaxy Reticulum II (Ret II). These stars span the full metallicity range of Ret II (-3.5<[Fe/H]< -2). Seven of the nine stars have extremely high levels of r-process material ([Eu/Fe]~1.7), in contrast to the extremely low neutron-capture element abundances found in every other ultra-faint dwarf galaxy studied to date. The other two stars are the most metal-poor stars in the system ([Fe/H]< -3), and they have neutron-capture element abundance limits similar to those in other ultra-faint dwarf galaxies. We confirm that the relative abundances of Sr, Y, and Zr in these stars are similar to those found in r-process halo stars, but they are ~0.5dex lower than the solar r-process pattern. If the universal r-process pattern extends to those elements, the stars in Ret II display the least contaminated known r-process pattern. The abundances of lighter elements up to the iron peak are otherwise similar to abundances of stars in the halo and in other ultra-faint dwarf galaxies. However, the scatter in abundance ratios is large enough to suggest that inhomogeneous metal mixing is required to explain the chemical evolution of this galaxy. The presence of low amounts of neutron-capture elements in other ultra-faint dwarf galaxies may imply the existence of additional r-process sites besides the source of r-process elements in Ret II. Galaxies like Ret II may be the original birth sites of r-process enhanced stars now found in the halo.
- ID:
- ivo://CDS.VizieR/J/A+A/565/A121
- Title:
- Abundances of 47 Tuc turn-off stars
- Short Name:
- J/A+A/565/A121
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The cluster 47 Tuc is among the most metal-rich Galactic globular clusters and its metallicity is similar to that of metal-poor disc stars and open clusters. Like other globular clusters, it displays variations in the abundances of elements lighter than Si, which is generally interpreted as evidence of the presence of multiple stellar populations. We aim to determine abundances of Li, O, and Na in a sample of of 110 turn-off (TO) stars, in order to study the evolution of light elements in this cluster and to put our results in perspective with observations of other globular and open clusters, as well as with field stars. We use medium resolution spectra obtained with the GIRAFFE spectrograph at the ESO 8.2m Kueyen VLT telescope and use state of the art 1D model atmospheres and NLTE line transfer to determine the abundances. We also employ CO^5^BOLD hydrodynamical simulations to assess the impact of stellar granulation on the line formation and inferred abundances.
- ID:
- ivo://CDS.VizieR/J/ApJ/819/103
- Title:
- Abundances of two very metal-poor stars
- Short Name:
- J/ApJ/819/103
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- From high resolution (R~=45000), high signal-to-noise ratio (S/N>400) spectra gathered with the Immersion Grating Infrared Spectrograph (IGRINS) in the H and K photometric bands, we have derived elemental abundances of two bright, well-known metal-poor halo stars: the red giant HD 122563 and the subgiant HD 140283. Since these stars have metallicities approaching [Fe/H]=-3, their absorption features are generally very weak. Neutral-species lines of Mg, Si, S and Ca are detectable, as well as those of the light odd-Z elements Na and Al. The derived IR-based abundances agree with those obtained from optical-wavelength spectra. For Mg and Si the abundances from the infrared transitions are improvements to those derived from shorter wavelength data. Many useful OH and CO lines can be detected in the IGRINS HD 122563 spectrum, from which derived O and C abundances are consistent to those obtained from the traditional [OI] and CH features. IGRINS high resolutions H- and K-band spectroscopy offers promising ways to determine more reliable abundances for additional metal-poor stars whose optical features are either not detectable, or too weak, or are based on lines with analytical difficulties.
369. Abundances of TX UMa
- ID:
- ivo://CDS.VizieR/J/MNRAS/415/2238
- Title:
- Abundances of TX UMa
- Short Name:
- J/MNRAS/415/2238
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- High-resolution echelle spectra have been obtained of the semi-detached Algol-type eclipsing binary system, TX UMa with the high-resolution echelle spectrographs of the 1.8m telescope at Bohyunsan Optical Astronomy Observatory in Korea and of the 2.0m telescope of Peak Terskol Observatory in Russia. New accurate radial velocities of its components have been measured.
- ID:
- ivo://CDS.VizieR/J/A+A/423/353
- Title:
- Abundances of UV-bright stars
- Short Name:
- J/A+A/423/353
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have derived the chemical composition of nine UV-bright stars belonging to five Galactic globular clusters of various metallicities ([Fe/H] from -1.0 to -2.4dex). The analyses are based on high resolution spectra obtained with the UV-Visual Echelle Spectrograph (UVES) at VLT-UT2.