- ID:
- ivo://CDS.VizieR/J/A+A/606/A58
- Title:
- Activity cycles in young solar-like stars
- Short Name:
- J/A+A/606/A58
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Magnetic cycles analogous to the solar cycle have been detected in tens of solar-like stars by analyzing long-term time series of different magnetic activity indexes. The relationship between the cycle properties and global stellar parameters is not fully understood yet. One reason for this is the lack of long-term time series for stars covering a wide range of stellar parameters. We searched for activity cycles in a sample of 90 young solar-like stars with ages between 4 and 95 Myr with the aim to investigate the properties of activity cycles in this age range. We measured the length P_cyc_ of a given cycle by analyzing the long-term time series of three different activity indexes: the period of rotational modulation, the amplitude of the rotational modulation and the median magnitude in the V band. For each star, we also computed the global magnetic activity index <IQR> that is proportional to the amplitude of the rotational modulation and can be regarded as a proxy of the mean level of the surface magnetic activity. We detected activity cycles in 67 stars. Secondary cycles were also detected in 32 stars of the sample. The lack of correlation between P_cyc_ and P_rot_ and the position of our targets in the P_cyc_/P_rot_-Ro^-1^ diagram suggest that these stars belong to the so-called transitional branch and that the dynamo acting in these stars is different from the solar dynamo and from that acting in the older Mt. Wilson stars. This statement is also supported by the analysis of the butterfly diagrams whose patterns are very different from those seen in the solar case. We computed the Spearman correlation coefficient r_S_ between P_cyc_, <IQR> and various stellar parameters. We found that P_cyc_ in our sample is uncorrelated with all the investigated parameters. The <IQR> index is positively correlated with the convective turnover timescale, the magnetic diffusivity timescale {tau}_diff_, and the dynamo number D_N_, whereas it is anti-correlated with the effective temperature Teff, the photometric shear {Delta}{Omega}_phot_ and the radius R_C_ at which the convective zone is located. We investigated how P_cyc_ and <IQR> evolve with the stellar age. We found that P_cyc_ is about constant and that <IQR> decreases with the stellar age in the range 4-95Myr. Finally we investigated the magnetic activity of the star AB Dor A by merging All Sky Automatic Survey (ASAS) time series with previous long-term photometric data. We estimated the length of the AB Dor A primary cycle as P_cyc_=16.78+/-2yr and we also found shorter secondary cycles with lengths of 400d, 190d, and 90d, respectively.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/431/2240
- Title:
- Activity in A-type stars from Kepler
- Short Name:
- J/MNRAS/431/2240
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Two years of Kepler data are used to investigate low-frequency variations in A-type stars. In about 875 (40%) A-type stars, the periodogram shows a simple peak and its harmonic. If we assume that the photometric period is the period of rotation, we can derive the equatorial rotational velocity from a suitable radius estimate. It turns out that the distribution of equatorial velocities derived in this way is similar to the distribution of equatorial velocities of A-type main-sequence stars in the general field derived from spectroscopic line broadening, verifying our initial assumption. We suggest that the light variation is due to rotational modulation caused by starspots or some other corotating structure. In many stars the rotation peak in the periodogram has a characteristic shape which is not understood. The light amplitudes are highly variable. We deduce from the amplitude distribution that the sizes of starspots in A-type stars are similar to the largest sunspots. From the widths of the peaks in the periodogram we deduce that differential rotation in these stars is similar to that in the Sun. We find that the period-colour relationship used for gyrochronology in late-type stars extends to early F-type and probably late A-type stars as well. Flares in A-type stars have been recently detected. We add 13 additional A-type flare stars to this sample, which means that about 1.5% of A-type stars in the Kepler field show flares. We conclude that A-type stars are active and, like cooler stars, have starspots and flares.
- ID:
- ivo://CDS.VizieR/J/A+A/652/A28
- Title:
- Activity indicators across the M dwarf domain
- Short Name:
- J/A+A/652/A28
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Stellar activity poses one of the main obstacles for the detection and characterisation of small exoplanets around cool stars, as it can induce radial velocity (RV) signals that can hide or mimic the presence of planetary companions. Several indicators of stellar activity are routinely used to identify activity-related signals in RVs, but not all indicators trace exactly the same activity effects, nor are any of them always effective in all stars. We evaluate the performance of a set of spectroscopic activity indicators for M dwarf stars with different masses and activity levels with the aim of finding a relation between the indicators and stellar properties. In a sample of 98 M dwarfs observed with CARMENES, we analyse the temporal behaviour of RVs and nine spectroscopic activity indicators: cross-correlation function (CCF) full-width-at-half-maximum (FWHM), CCF contrast, CCF bisector inverse slope (BIS), RV chromatic index (CRX), differential line width (dLW), and indices of the chromospheric lines H{alpha} and calcium infrared triplet. A total of 56 stars of the initial sample show periodic signals related to activity in at least one of these ten parameters. RV is the parameter for which most of the targets show an activity-related signal. CRX and BIS are effective activity tracers for the most active stars in the sample, especially stars with a relatively high mass, while for less active stars, chromospheric lines perform best. FWHM and dLW show a similar behaviour in all mass and activity regimes, with the highest number of activity detections in the low-mass, high-activity regime. Most of the targets for which we cannot identify any activity-related signals are stars at the low-mass end of the sample (i.e. with the latest spectral types). These low-mass stars also show the lowest RV scatter, which indicates that ultracool M dwarfs could be better candidates for planet searches than earlier types, which show larger RV jitter. Our results show that the spectroscopic activity indicators analysed behave differently, depending on the mass and activity level of the target star. This underlines the importance of considering different indicators of stellar activity when studying the variability of RV measurements. Therefore, when assessing the origin of an RV signal, it is critical to take into account a large set of indicators, or at least the most effective ones considering the characteristics of the star, as failing to do so may lead to false planet claims.
- ID:
- ivo://CDS.VizieR/J/A+A/531/A8
- Title:
- Activity indices and velocities for 890 stars
- Short Name:
- J/A+A/531/A8
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this work we present chromospheric activity indices, kinematics, radial-velocities, and rotational velocities for more than 850 FGK-type dwarfs and subgiant stars in the southern hemisphere and test how best to calibrate and measure S -indices from echelle spectra. We measured our parameters using the high-resolution and high-S/N FEROS echelle spectra acquired for this purpose. Results. We confirm the bimodal distribution of chromospheric activities for such stars and highlight the role that the more active K-dwarfs play in biasing the number of active stars. We show that the age-activity relationship does appear to continue to ages older than the Sun if we simply compare main sequence stars and subgiant stars with an offset of around 2.5Gyr between the peaks of both distributions. Also we show evidence of an increased spin-down timescale for cool K dwarfs compared with earlier F and G type stars. We highlight that activities drawn from low-resolution spectra (R<2.500') significantly increase the rms scatter when calibrating onto common systems of measurements like the Mt. Wilson system. Also we show that older and widely used catalogues of activities in the south appear to be offset compared to more recent works at the ~0.1dex level in logR'HK through calibrator drift. In addition, we show how kinematics can be used to preselect inactive stars for future planet search projects. We see the well known trend between projected rotational velocity and activity, however we also find a correlation between kinematic space velocity and chromospheric activity. It appears that after the Vaughan-Preston gap there is a quick step function in the kinematic space motion towards a significantly broader spread in velocities. We speculate on reasons for this correlation and provide some model scenarios to describe the bimodal activity distribution through magnetic saturation, residual low level gas accretion, or accretion by the star of planets or planetesimals. Finally, we provide a new empirical measurement for the disk-heating law, using the latest age-activity relationships to reconstruct the age-velocity distribution for local disk stars. We find a value of 0.337+/-0.045 for the exponent of this power law, in excellent agreement with those found using isochrone fitting methods and with theoretical disk-heating models.
- ID:
- ivo://CDS.VizieR/J/MNRAS/372/163
- Title:
- Activity indices for southern stars
- Short Name:
- J/MNRAS/372/163
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have acquired high-resolution echelle spectra of 225 F6-M5 type stars in the Southern hemisphere. The stars are targets or candidates to be targets for the Anglo-Australian Planet Search. CaII H&K line cores were used to derive activity indices for all of these objects. The indices were converted to the Mt. Wilson system of measurements and logR'_HK_ values determined. A number of these stars had no previously derived activity indices. In addition, we have also included the stars from Tinney et al. (2002MNRAS.332..759T) using our Mt. Wilson calibration. The radial-velocity instability (also known as jitter) level was determined for all 21 planet-host stars in our data set. We find the jitter to be at a level considerably below the radial-velocity signatures in all but one of these systems. 19 stars from our sample were found to be active (logR'_HK_>-4.5) and thus have high levels of jitter. Radial-velocity analysis for planetary companions to these stars should proceed with caution.
- ID:
- ivo://CDS.VizieR/J/AJ/138/312
- Title:
- Activity of bright solar analogs
- Short Name:
- J/AJ/138/312
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 14 years of contemporaneous photometric and spectroscopic observations of 28 solar analog stars, taken with the Tennessee State University Automatic Photometric Telescopes at Fairborn Observatory and the Solar-Stellar Spectrograph at Lowell Observatory. These are the best observed and most nearly Sun-like of the targets in our magnitude-limited (V<=7.5) sample. The correlations between luminosity and activity reveal the expected inverse activity-brightness correlations for active stars. Strong direct correlations between activity and brightness are not prevalent for the less active solar age stars, but are precision limited.
- ID:
- ivo://CDS.VizieR/J/A+A/621/A21
- Title:
- Activity of Kepler stars
- Short Name:
- J/A+A/621/A21
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The study of stellar activity cycles is crucial to understand the underlying dynamo and how it causes magnetic activity signatures such as dark spots and bright faculae. Having knowledge about the dominant source of surface activity might allow us to draw conclusions about the stellar age and magnetic field topology, and to put the solar cycle in context. We investigate the underlying process that causes magnetic activity by studying the appearance of activity signatures in contemporaneous photometric and chromospheric time series. Lomb-Scargle periodograms are used to search for cycle periods present in the photometric and chromospheric time series. To emphasize the signature of the activity cycle we account for rotation-induced scatter in both data sets by fitting a quasi-periodic Gaussian process model to each observing season. After subtracting the rotational variability, cycle amplitudes and the phase difference between the two time series are obtained by fitting both time series simultaneously using the same cycle period. We find cycle periods in 27 of the 30 stars in our sample. The phase difference between the two time series reveals that the variability in fast-rotating active stars is usually in anti-phase, while the variability of slowly rotating inactive stars is in phase. The photometric cycle amplitudes are on average six times larger for the active stars. The phase and amplitude information demonstrates that active stars are dominated by dark spots, whereas less-active stars are dominated by bright faculae. We find the transition from spot to faculae domination to be at the Vaughan-Preston gap, and around a Rossby number equal to one. We conclude that faculae are the dominant ingredient of stellar activity cycles at ages >~2.55Gyr. The data further suggest that the Vaughan-Preston gap cannot explain the previously detected dearth of Kepler rotation periods between 15 and 25 days. Nevertheless, our results led us to propose an explanation for the lack of rotation periods to be due to the non-detection of periodicity caused by the cancelation of dark spots and bright faculae at ~800Myr.
- ID:
- ivo://CDS.VizieR/J/A+A/552/A135
- Title:
- Activity of the Seyfert galaxy neighbours
- Short Name:
- J/A+A/552/A135
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a follow-up study of a series of papers concerning the role of close interactions as a possible triggering mechanism of AGN activity. We have already studied the close (<100kpc/h) and the large-scale (<1Mpc/h) environment of a local sample of Sy1, Sy2, and bright IRAS galaxies (BIRG) and of their respective control samples. The results led us to the conclusion that a close encounter appears capable of activating a sequence where an absorption line galaxy (ALG) galaxy first becomes a starburst, then a Sy2, and finally a Sy1. Here we investigate the activity of neighbouring galaxies of different types of AGN, since both galaxies of an interacting pair should be affected. To this end we present the optical spectroscopy and X-ray imaging of 30 neighbouring galaxies around two local (z<0.034) samples of 10 Sy1 and 13 Sy2 galaxies. Although this is a pilot study of a small sample, various interesting trends have been discovered that imply physical mechanisms that may lead to different Seyfert types. Based on the optical spectroscopy we find that more than 70% of all neighbouring galaxies exhibit star forming and/or nuclear activity (namely recent star formation and/or AGN), while an additional X-ray analysis showed that this percentage might be significantly higher. Furthermore, we find a statistically significant correlation, at a 99.9% level, between the value of the neighbour's [OIII]/H{beta} ratio and the activity type of the central active galaxy, i.e. the neighbours of Sy2 galaxies are systematically more ionized than the neighbours of Sy1s. This result, in combination with trends found using the Equivalent Width of the H{alpha} emission line and the stellar population synthesis code STARLIGHT, indicate differences in the stellar mass, metallicity, and star formation history between the samples. Our results point towards a link between close galaxy interactions and activity and also provide more clues regarding the possible evolutionary sequence inferred by our previous studies.
- ID:
- ivo://CDS.VizieR/J/MNRAS/403/1474
- Title:
- Activity of 70um-selected galaxies
- Short Name:
- J/MNRAS/403/1474
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first active galactic nuclei (AGN) census in a sample of 61 galaxies selected at 70um, a wavelength which should strongly favour the detection of star-forming systems. For the purpose of this study, we take advantage of deep Chandra X-ray and Spitzer infrared (3.6-160um) data, as well as optical spectroscopy and photometry from the Deep Extragalactic Evolutionary Probe 2 (DEEP 2) survey for the Extended Groth Strip (EGS) field, as part of the All-Wavelength Extended Groth Strip International Survey. We investigate spectral line diagnostics ([OIII]/H {beta} and [NeIII]/[OII] ratios, H{delta} Balmer absorption line equivalent widths and the strength of the 4000{AA} break), X-ray luminosities and spectral energy distributions (SEDs).
- ID:
- ivo://CDS.VizieR/J/A+A/397/147
- Title:
- Activity-rotation relationship in stars
- Short Name:
- J/A+A/397/147
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a new study on the relationship between coronal X-ray emission and stellar rotation in late-type main-sequence stars. We have selected a sample of 259 dwarfs in the B-V range 0.5-2.0, including 110 field stars and 149 members of the Pleiades, Hyades, {alpha} Persei, IC 2602 and IC 2391 open clusters. All the stars have been observed with ROSAT, and most of them have photometrically-measured rotation periods available. Our results confirm that two emission regimes exist, one in which the rotation period is a good predictor of the total X-ray luminosity, and the other in which a constant saturated X-ray to bolometric luminosity ratio is attained; we present a quantitative estimate of the critical rotation periods below which stars of different masses (or spectral types) enter the saturated regime.