The distinguishing feature of the evolution of close binary stars is the role played by the mass exchange between the component stars. Whether or not the mass transfer is dynamically stable is one of the essential questions in binary evolution. In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We use the adiabatic mass-loss model to systematically survey the thresholds for dynamical timescale mass transfer over the entire span of possible donor star evolutionary states. We also simulate mass-loss process with isentropic envelopes, the specific entropy of which is fixed to be that at the base of the convective envelope, to artificially mimic the effect of such mass loss in superadiabatic surface convection regions, where the adiabatic approximation fails. We illustrate the general adiabatic response of 3.2M{odot} donor stars at different evolutionary stages. We extend our study to a grid of donor stars with different masses (from 0.1 to 100 M{sun} with Z=0.02) and at different evolutionary stages. We proceed to present our criteria for dynamically unstable mass transfer in both tabular and graphical forms. For red giant branch (RGB) and asymptotic giant branch (AGB) donors in systems with such mass ratios, they may have convective envelopes deep enough to evolve into common envelopes on a thermal timescale, if the donor star overfills its outer Lagrangian radius. Our results show that the RGB and AGB stars tend to be more stable than previously believed, and this may be helpful to explain the abundance of observed post-AGB binary stars with an orbital period of around 1000 days.
We present and discuss a three-dimensional diagnostic diagram for Seyfert 2 galaxies obtained using X-ray and [O III] data on a large sample of objects (reported in the Appendix). The diagram shows the K{alpha} iron line equivalent width as a function of both the column density derived from the photoelectric cutoff and the 2-10 keV flux normalized to the [O III] optical-line flux (the latter corrected for extinction and assumed to be a true indicator of the source intrinsic luminosity). We find that the hard X-ray properties of type 2 objects depend on a single parameter, the absorbing column density along the line of sight, in accordance with the unified model. The diagram can be used to identify Compton-thick sources and to isolate and study peculiar objects. From this analysis we have obtained a column density distribution of Seyfert 2 galaxies that is thought to be a good approximation of the real distribution. A large population of heavily absorbed objects is discovered, including many Compton-thick candidates. Our results indicate that the mean log N_H_cm^-2^ in type 2 Seyfert galaxies is 23.5 and that as many as 23%-30% of sources have N_H_=>10^24^cm^-2^.
Flares and coronal mass ejections (CMEs) are important for the evolution of the atmospheres of planets and their potential habitability, particularly for planets orbiting M stars at a distance <0.4AU. Detections of CMEs on these stars have been sparse, and previous studies have therefore modelled their occurrence frequency by scaling up solar relations. However, because the topology and strength of the magnetic fields on M stars is different from that of the Sun, it is not obvious that this approach works well. We used a large number of high-resolution spectra to study flares, CMEs, and their dynamics of the active M dwarf star AD Leo. The results can then be used as reference for other M dwarfs. We obtained more than 2000 high-resolution spectra (R~35000) of the highly active M dwarf AD Leo, which is viewed nearly pole on. Using these data, we studied the behaviour of the spectral lines H{alpha}, H{beta}, and HeI 5876 in detail and investigated asymmetric features that might be Doppler signatures of CMEs. We detected numerous flares. The largest flare emitted 8.32x10^31^erg in H{beta} and 2.12x10^32^erg in H{alpha}. Although the spectral lines in this and other events showed a significant blue asymmetry, the velocities associated with it are far below the escape velocity. Although AD Leo shows a high level of flare activity, the number of CMEs is relatively low. It is thus not appropriate to use the same flare-to-CME relation for M dwarfs as for the Sun.
The Unified Astronomy Thesaurus (UAT) provides a comprehensive,
interlinked set of concepts relevant for astronomy and astrophysics using
SKOS. It is taken up in the Virtual Observatory at least for registry
subject keywords. For various reasons, it is desirable to have the UAT
available subject to the constraints laid down in the IVOA Vocabularies
in the VO 2 specification. This Note describes the rationale and the
details of the UAT adoption by the IVOA.